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Best of set: Mathematics

Contents and Introduction

From
past issues of set we have extracted a number of articles of

research on mathematics, and supplemented them by some new
and more recent material. Ten of the items are reprints, some with
minor modifications; the remaining six are new. They have been
grouped into three categories: General, Primary and Secondary, for
convenience, and we hope that they will be of interest to teachers,
board members, and students, as the winds of change blow across
the mathematics curriculum and assessment landscape in both New
Zealand and Australia.

Contents

1. Contents and Introduction
Ian Livingstone and John Izard

The contents sheet is supplemented by an introduction,
summarising recent trends in mathematics education in
New Zealand and Australia.

General:

2. Twenty-nine Tough Questions
Andy Begg

This new item is a light-hearted but penetrating article set in
the form of a questionnaire to teachers, challenging them
to think about important topics confronting mathematics
educators today.

3. Unlockingthe Great Secret
Graeme Withers

In this article about teaching mathematics, the techniques
of process writing are used to help both children and
teachers understand how thinking can help in problem-
solving. From set No. 2, 1989.

4. Evaluating Learning in Mathematics
Ken Carr and Garth Ritchie

Methods of assessment come under scrutiny: norm based,
mastery based and interview techniques have been
researched. Problems with each are faced and alternatives
discussed. From set No. 1, 1991.

5. Understanding Children's Mathematics:
Some Assessment Tools
Geoffrey Masters and Brian Doig
Adapted from a chapter of a recent book, Assessment and
Learning of Mathematics, edited by Gilah Leder, and
published by ACER, this item describes advances in
formative assessment in mathematics, making clever use
of computer-generated graphics to give assistance.

6. What Mathematicians Do
Derek Holton

There is much to be learnt about how to teach a subject
from what practitioners actually do each day. This insight
into what delights mathematicians may possibly delight our
pupils. From set No. 1, 1993.
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Primary:

7. Number Skills in Junior Classrooms
Jenny Young-Loveridge

Teachers are very good at judging children's mathematical
knowledge and skills. This the research discovered. But
some types of syllabus do not bring about maximum
progress. From set No. 2, 1988.

8. Small Children Solve Big Problems
Lyn English

5- and 6-year-olds can solve problems not anticipated by
our syllabuses. The evidence of abstract thought and
mathematical problem-solving encourages everyone to aim
high. From set No. 2, 1990.

9. There are Numbers Behind the Piano
Ken Carr

We adults would like children to construct the same,
correct, meanings in mathematics as we do. By asking
bizarre questions and listening to children's explanations,
Ken Carr found how to clear away misconceptions. From
set No. 2, 1986.

10. Being Both Right and Wrong
Kathryn Irwin

If you can see with a child's eyes, some processes in
mathematics seem quite illogical addition can flow either
way, substraction only one! So many children arrive at
impasses. Here is help with how to see impasses, and help
overcome them.

11. Beginning to Learn Fractions
Robert Hunting

Is seven sixteenths bigger or smaller than eight
seventeenths? We all find fractions hard. Here are ways
of introducing fractions so that the natural instincts of
children in sharing and counting are built upon. From set
No. 2, 1989.

12. Helping One Another Learn
Gill Thomas

In the present-day classroom children talk toeach other a
lot. This item analyses what actually goes on, and examines
young children's ability to help one another in mathematics.
From set No. 2, 1992.
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Secondary:

13. A Child's Perspective of Algebra
Nerida Ellerton

What is it that makes algebra a mystery to some children?
A series of in-depth interviews, in which children talked
through their solutions to 10 mathematics problems,
emphasises the need for abstract mathematics to develop
from children's own needs and experiences. From set No. 2,
1985 (Australian Edition)

14. What are the Benefits of Single-Sex
Maths Classes?
Ken Rowe

A very carefully-run experiment in Ballarat High School
shows definite benefits in single-sex classes. But would this
be true in all secondary schools? The benefits claimed are
detailed, along with critical comment. From set No. 1,
1990.

15. Mathematical Needs of School Leavers
Gordon Knight and colleagues

Adults were interviewed to discover the mathematics they
actually used in everyday life and in their workplaces. The
importance of problem-solving, simple estimating, optimis-
ing (often time or costs), 'finding the best strategy to follow'
and the confident use of calculators is emphasised. From set
No.1, 1994.

16. How I Failed
Anon

This short, witty piece, reprinted with permission from the
New Zealand Mathematics Magazine, emphasises the
danger of over-simplification of mathematical problems
encountered in the real world.

Introduction

Mathematics Teaching Today

A Short Overview of what Research has to Offer

Ian Livingstone and John lzard

Recent developments in mathematics education in both
Australia and New Zealand are not occurring in isolation, but
are mirroring international trends. There is an increasing
emphasis on applications of mathematics in context, rather
than abstract or pure, mathematics. In the words of the
recent Mathematics in the New Zealand Curriculum state-
ment:

Mathematics is a coherent, consistent, and growing body
of concepts which makes use of specific language and
skills to model, analyse, and interpret the world.
Mathematics provides a means of communication which is
powerful, concise, and unambiguous.

This may be a very incomplete statement to a pure mathe-
matician, such as Derek Holton, whose item No.6 in this Best
of set describes what professional mathematicians do. It is
certainly not how philosophers of science would describe
mathematics. However, it is how curriculum developers reflect
the current emphasis, born of bad times, on the practical and
pragmatic over the pure and esoteric students want jobs
when they leave school and there are precious few in pure
mathematics. On the other hand industry and administration
need, more and more, those who can apply mathematics.

With this increasing emphasis upon what mathematicians
do (the mathematical processes) rather than on what mathe-
maticians know (the mathematical content), mathematics is
no longer seen as a pure, intact subject discipline in its own
fight, of value irrespective of its links with other areas of
knowledge or with everyday life.

A Practical Emphasis

The teaching and learning of mathematics is now thought to
be best carried out among the problems which are meaning-
ful to students. There is good research backing for this
approach, both from learning theory and because it will lead
to an increased understanding of the way mathematics is
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applied in the world beyond school. Teachers are being asked
to devote specific attention to such processes as reasoning,
and problem-solving (including modelling and the techniques
of investigation). Part of the problem-solving exercise will
often involve the development of co-operative skills, some-
thing for which mathematics classrooms have not been noted
in the past. Group work in mathematics is now to be encour-
aged. The ability to work on team projects, and to communi-
cate findings and explanations, is now seen as an important
outcome for mathematics education.

Probability and Statistics

Mathematics is used more and more in everyday life; as a con-
sequence, statistical concepts, including probability, must
have increased emphasis, at all levels in the curriculum.There
are important recently-developed forms of exploratory data
analysis, but classical statistical concepts will always have a
place too. The advent of computers has meant an increased
use of simple, graphical forms of data analysis, which have
the benefit that they are not difficult for children to under-
stand. They fit well with the new topics of problem-solving
and investigation, and lend themselves very nicely to illustrat-
ing the results of simple experiments in science, social studies,
and technology. The use of calculators has also meant that
the computational difficulties (which come with real life prob-
lems) no longer slow down solutions nor get in the road of
seeing problems as a whole. It often doesn't matter if the fig-
ures don't come out exactly to the 5th decimal place, but an
increased understanding of approximation and estimation
becomes crucial.

Electronics Revolution

The widespread use of electronic calculators, and the increas-
ing availability of computers, are forces driving mathematics
teaching in certain directions. The personal computer is an
increasingly cheap and powerful tool. We can expect it to-
become more common than the personal car, and as liberat-
ing. Sensible use of computers demands high levels of simple
numeracy, the ability to estimate the likely size of answers
and to record them accurately, and most of all, an under-
standing of the correct processes to apply in any given situa-
tion. Heavy algorithmic computations (involvenractions, log-
arithms, trigonometric computations and so on) are out the
calculator or computer will see to them - an understanding of
what to do, and the approximate answer to expect, are in.
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Catering for All

This is a logical outgrowth of the general principle that educa-
tion should cater for the needs of every individual. For exam-
ple, there is widely-expressed concern that girls should not be
disadvantaged by the content, teaching styles and assessment
modes used in the mathematics classroom. This concern turns
out to be only a mild worry - in New Zealand there is strong
research evidence that girls do better than boys, in mathemat-
ics as in most other subjects, at least until the pre-university
year. Research evidence in Australia is more difficult to inter-
pret. Prior to the pre-university year girls tend to do better in
mathematics than boys. At the final year of school the pat-
terns are more complex due to the diversity of mathematical
studies in the eight separate school systems within Australia.

There are other groups which need special attention. We
must consider the prior experiences of all students. Many
come from different cultures and subcultures. Not only do the
actual problems we set need to be within their field of experi-
ence, but even the very language of mathematics itself needs
to be considered. The development of mathematics vocabu-
lary in Maori, for example, has taken enormous strides in
recent years, the Ministry of Maori Development, the Maori
Language Commission, and the NZ Council for Educational
Research all being involved as well as practising teachers. A
bulletin board and database of technical terms is maintained
and kept up to date by NZCER. These developments are of
great help in constructing mathematics curricula in the ever-
growing number of bicultural schools in New Zealand. Similar
issues face schools in Australia, particularly those with a diver-
sity of first languages.

Curriculum Diversity

Many more students are staying longer at school. This is in
part because there are so few jobs; in part it reflects a desire
for better qualifications. The result has been a restructuring of
senior secondary school programmes, a broadening of curric-
ula available, and increased flexibility allowing different com-
binations of subjects to be taken, often at different levels. Old
specialist mathematics curricula just for the academically elite
in upper forms are no longer appropriate, and new, more var-
ied, less prescriptive curricula have been developed, suitable
for the more diverse group now taking mathematics at that
level. Because many.have not tasted success in Mathematics
at earlier levels, increased attention has had to be paid to
diagnostic and remedial work, and rebuilding the foundations
of concepts and processes which have not been securely laid
in previous years.

Constructivism

The teaching of mathematics in schools in both New Zealand
and Australia is being driven by two competing views of the
ways in which students learn mathematics do they learn
from the teacher or by themselves?

According to one view, sometimes termed the behaviourist
view, the syllabus drives the learning. The syllabus lists the
content and skills; the teacher possesses-them (or is supposed
to), and the students will learn them from the teacher.
Students are encouraged to work individually, and required to
produce the information on demand. The function of the
teacher is to transmit particular knowledge to the pupils, to
find out who has learned what (by assessing many discrete
pieces of information), and to ensure that this knowledge is
retained until the examinations are over.

The alternative view, commonly called constructivism, sees
students deriving meaning in mathematics from the context in

BEST COPY AVAILABLE

which the meanings are communicated, and places a premi-
um on collaboration and communication, demanding

a style of learning which relies upon learner responsibility,
group communication and the negotiation of meaning
between and with learners. It leads to a form of assess-
ment which is reflective, that is self-questioning, rather
than performance based.

The teacher provides work that the students acknowledge
is worthwhile and relevant, and gets them to take responsibil-
ity for their own learning and improvement. The student is,
for example, expected to participate (or negotiate) with the
teacher in planning the next stage of work. Assessment is
designed to empower the pupils to gauge their own progress
(as well as to inform the teacher and others) and will usually
involve gathering some evidence from more complex integrat-
ed activities.

If the learning environment is student-centred, it is impor-
tant to appreciate what occurs in the interval between when
students embark on a task and when they complete it. In

some contexts, learning driven by the syllabus and the
teacher's greater knowledge (the first perspective) might be
appropriate. In other contexts, the second perspective offers
more efficient learning.

Acquisition, without commitment or deep consideration, of
principles from teacher or other authority is shallow learn-
ing. The principles may be discarded as soon as the need
for them in a test or examination has passed.
Sometimes they do not survive that long. ... an individual's
possession of conflicting views indicates that person's lack
of awareness of what he or she knows, a lack of
reflection on the meaning of knowledge.

Control over one's own learning involves

... constant use of positive strategies: getting the purpose
clear, judging whether understanding is sufficient, search-
ing for connections and conflicts with what is already
known, creating images and thinking of relevant_:._
experiences.
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The two views of the learner are thus contrasted - in one the
student acquires more of what the teacher already knows; in
the other the student shares some knowledge the teacher
has, but also has some knowledge the teacher lacks. The for-
mer view implies that a detailed prescription of what everyone
should be taught can be drawn up. The latter view implies
that a single prescription cannot be drawn up; students start
at different places, need different facts and skills. Each has to
construct his or her own personal meaning, in other words,
do his and her own learning.

Changes in Assessment

Assessment strategies must be appropriate to the curriculum
goals. If the curriculum emphasises reasoning skills, the ability
to choose and integrate information, to present it in oral and
written form, and the development of a critical approach to
knowledge, then the testing must test those skills, and not
just recall of facts or the ability to calculate. Methods are -
needed to quantify, test, and report back on skill in reasoning
and reflection, integration of relevant information and draw-
ing conclusions, finding convincing arguments and conveying
the consequences of an investigation, and recognising its limi-
tations. Pencil-and-paper examinations distort what we are
asking for, if they fail to allow for multiple (correct) solutions,
and a diversity of problem-solving approaches. Nor are they
appropriate where the skills looked for cannot be demon-
strategeasily at a desk.



Many traditional examinations assess skills indirectly. This is
acceptable if the teaching has kept intact-the relationships
between the direct and indirect knowledge. However, there
are pressures against this noble art. When students, teachers
and administrators consider examination results are impor-
tant, they can, mistakenly, infer that those tasks not examined
are not important. To obtain 'better' marks they concentrate
on teaching to the anticipated examination questions, rather
than to the achievement itself. This intensive coaching on the
test leads to an increased test score, but not to increased
achievement in the full range of knowledge and skills you will
find in the curriculum statement. The indirect measure
(the exam) then ceases to be a valid measure of the true
objectives.

'Direct' assessment is a good way to avoid teaching the
strategies of test-wiseness, and teach the skills the curriculum
intends instead. The use of projects and investigations to pro-
vide assessment evidence, in whatever form and at whatever
level, can ensure that the tasks mirror the skills desired. This
makes for valid assessment.

Such assessment is not a simple matter; assessment in
authentic contexts involves assessment of complex behaviour.
The much wider range of possible responses means that bet-
ter approaches have to be devised. However, on the plus side,
the procedures needed to deal with complexity also encour-
age better communication between the examinee and the
examiner.

There should be more consistent and relevant acts of
assessment, giving feed-back for further learning. Good
examples of how the teacher can search for evidence of
beliefs and explore the development of meaning can be
found in other disciplines in the school. For instance, some
excellent techniques are to be found in Tapping Students'
Science Beliefs, by Doig and Adams.

In traditional assessment there is considerable emphasis on
what students can do alone with just pencil-and-paper. This
excludes the qualities associated with working co-operatively:
sharing out tasks as a more efficient way of tackling prob-
lems, and being able to accomplish integrated and complex
practical tasks. Yet living in a family and a society means
being able to collaborate with others in doing such tasks.
Working productively in groups, and recognising and solving
local problems, are skills essential for survival and being part
of the community. Some people involved in research studies
Into assessment have become more aware of this issue, but
further work is necessary.

Project work is firmly student-centred; thus, when using
projects, it is natural for the student to be involved in the
assessment process. How are student views (on their own
work and that of their colleagues) to be incorporated? What
should be done about the problem of self-incrimination?

How should students be involved? The evidence being
assessed will be complex - in many cases the evidence from a
single project can be substantial and a considerable amount
of time may be needed for students to gain assessment expe-
rience. If students are to make real contributions to their own
assessments, then teaching staff must be sure that the factors
considered have some integrity. Descriptors which reflect the
student's own assessment of achievement will need careful
development and testing in order to be accepted within any
globaLscherne. Teatffers will neecrto- ensure that they a*re-
consistent when using such descriptors and that students
understand-what they mean. However, these problems must
be faced if we are to begin assessing mathematics learning,
rather than the ability to regurgitate facts and follow well-
rehearsed procedures while the exam is on.
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Notes

Dr. John Izard is Assistant Director and the head of the
Development and Training Division of the Australian Council for
Educational Research, Box 210, Hawthorn, Victoria, Australia
3122.

Mr. Ian Livingstone is the immediate past Director of the New
Zealand Council for Educational Research, Box 3237, Wellington,
New Zealand.

The curriculum statement comes from
New Zealand Ministry of Education (1993) Mathematics in the
New Zealand Curriculum, Wellington: NZ Ministry of
Education.

A recent report on Mathematics in Maori is
Te Puni Kokiri; The Ministry of Maori Development (1993)
Pangarau Maori Mathematics and Education. Wellington: Te
Puni Kokiri.

The database of Maori language mathematics vocabulary, (and
indeed all new vocabulary for all subjects) can be accessed by
modem. The initial application should be to

(FIDONET) 3:771/210
Or

(INTERNET) bmaori@matai.vuw.ac.nz
and when you are accepted as a bona fide inquirer the database
may be searched, downloaded, etc.

The quotation '...a style of learning which relies on learner
responsibility...' is from

Burton, L. (1992). Who assesses whom and to what purpose?
In M. Stephens & J. Izard. (Eds.) Reshaping assessment prac-
tices: Assessment in the mathematical sciences under chal-
lenge. (pp. 1-18).Hawthorn, Vic.: Australian Council for
Educational Research.

The quotation 'Acquisition, without commitment or deep consid-
eration...' has the author's emphasis, and is from . -

White, R.T. (1992). Implications of recent research on learning
for curriculum and assessment. Journal of Curriculum Studies,
24, page 157.

The quotation '...constant use of positive strategies...' is also
from White (1992), page 157.

The problem of keeping direct and indirect mathematical know-
ledge intact under exam prescription pressure is discussed in

Gasking, D.A.T. (1948). Examinations and the aims of educa-
tion. Carlton, Vic.: Melbourne University Press.

and
Madaus, G.F. (1988). The influence of testing on the curricu-
lum. In L.N.Tanner (Ed.). Critical Issues in the -Curriculum,
87th Yearbook of the National Society for the Study of
Education, I, (pp.83-121). Chicago:- National Society for the
Study of Education.

The full reference of the Doig and Adams package on beliefs and
meaning in school science is

Doig, B. & Adams, R. (1993). Tapping Students' Science
Beliefs: A resource for teaching and learning. Hawthorn, Vic.:
Australian Council for Educational Research.

Involving students in assessing their own work, particularly that in
projects, is explained in

Falchikov, N. & Boud, D. (1989). Student self-assessment in
higher education: A meta-analysis. Review of Educational
Research, 59, 395-430.

© Copying Permitted

Copyright on this item is held by ACER and NZCER who grant to
all people actively involved in education the right to copy it in the -
interests of better teaching; just acknowledge the source.
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In the best traditions of teaching, this special edition of set is accompanied by a test which is to be used twice: as
a pre-test before the articles have been read, and as a post-test on completion.

To maximise the difference between these results (that is, the value added by this unit of work) candidates
should-be involved in study groups which use logic, problem-solving and communication, as well as
technological aids.

In cases where the mark is to be used as part of an achievement-based assessment for the award of a
learning unit, that is, as a real test, candidates may wish to not take the pre-test too seriously, thus increasing the
difference between their two results.

ti

set: Mathematics Test
Instructions

This test has no time limit.
Do as many questions as possible in the available time.
Read all the questions carefully before beginning to answer them.

Question 1 (Do either option a or b)
(a) When did you last use Apollonius's Theorem?
(b) When did you last use a matrix to solve a practical transformation problem?

Question 2
Why do we teach mathematics? (Extra marks will be awarded for unique and honest reasons here rather than for
quotations from well known sources.)

Question 3
Is mathematics education in a crisis or is it alive and well? Comment.

Question 4
Which of the following statements do you agree with?

(a) A teacher needs to know what prior knowledge and experience each student brings to the class.
(b) A teacher needs to know what students want to learn.
(c) The teacher knows best what students need to learn.
(d) Parents have an important contribution to make to each school's mathematics programme.

Question 5
List your responses to the following:

(a) As teachers, what do we bring to the classroom?
(b) As teachers what would we like to bring to the classroom?
(c) What do the experts think we should bring to the classroom?
(d) What extra skills do we need now in the classroom that were not required 10 years ago?

Question 6
Comment on the following two statements:

(a) Mathematics serves the needs of all students.
(b) Mathematics education should be concerned with the mathematical needs of each student rather than

introduce the student into the world of the mathematician.

Question 7
Which of the following options do you prefer?
Statistics is taught by so many different subject teachers that a statistics coordinator should be appointed in every school
to ensure that:

(a) all teachers learn from the mathematics staff how it should be taught.
(b) an agreed approach can be decided upon by the different subject teachers.

Question 8
Comment on the following:
Mathematics should be taught through its contribution to other subjects rather than as a separate subject. All schools
need is a maths co-ordinator.

Question 9
Which of the following would you have preferred as a student? Why?

(a) Sailing and navigation or trigonometry.
(b) Banking and financial mathematics.
(c) School mathematics as at present.
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Question 10
Which of the

(a)
(14-
(c)
(d)
(e)
(f)
(g)

Question 11
Comment on

(a)
(b)

(c)

following would do most to improve the standard of mathematics teaching?
Retraining programmes for surplus teachers from other subjects.
Sabbatical leave for mathematics teachers.
A 20% increase in pay for all mathematics teachers.
A bigger quota of teacher trainees in mathematics courses.
More teachers with majors in education rather than mathematics.
More teachers with majors in mathematics rather than education.
National assessment at ages 5, 8, 13, and 17.

the following:
Did the introduction of 'new mathematics' alter how people teach mathematics?
What changes have you made in your teaching as a result of a recent document e.g.,
Australia: A National Statement on Mathematics for Australian Schools;
NZ: Mathematics in the New Zealand Curriculum?
Do new text books have a greater effect on the author's bank balance or on the way that mathematics is
taught?

Question 12
This mathematics test is boring as there are no conversations or illustrations.
(True or False?)

Question 13
Which pre-1980 network was formed first?

(a) Mathematics associations.
(b) Inspectors, curriculum officers and advisers.

Question 14
List the following networks in the order in which they were formed.

(a) Primary mathematics associations.
(b) Mathematics-gender affirmative action groups.
(c) Mathematics-gender equity groups.
(d) Aborigine bicultural and bilingual networks.
(e) Maori bicultural and bilingual networks.
(f) Pacific Island mathematics teachers' group.
(g) Gifted children mathematics association.
(h) Family maths networks.

Question 15
Draw a graph to show how much money was spent on the following last year:

(a) Mathematics research;
(b) Education research;
(c) Mathematics education research.

Question 16
(a)
(b)

List all the institutions you know that are currently doing significant mathematics education research.
Draw a graph to show the percentage of your country's GNP that is and has been spent on mathematics
education research over the last 5 years.

Question 17
Rank the following questions in order of importance as topics for research grants:

(a) How do New Zealand and Australian students compare with their peers elsewhere in the world?
(b) What do students know when they come to school?
(c) How do students form mathematical concepts?
(d) What mathematics is useful in the real world?

Question 18
Write an essay on how to teach mathematics, or on any new maths textbook. Be sure to use the following terms
Problem- solving, logic, communication, calculation, computers, group work, relevance, assessment for better learning,
and achievement-based assessment.

Question 19
Choose one of the following topics and list 10 points about it.

(a) Assessment in mathematics
(b) Diagnostic mathematics programmes using computers
(c) Assessment alternatives with particular reference to projects
(d) Why this review test is not a good assessment instrument.
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Question 20
Comment on each of the following statements:

(a) The latest calculators can graph functions, solve equations, differentiate and integrate but will have no
effect on what we teach or how we teach.

(b) Now that computer courses exist in most schools, computers should be banned from the mathematics
classroom as they allow students to avoid the hard work of mathematics.

(c) Membership of the local chapter of the Luddites is a desirable attribute for all mathematics teachers.

Question 21
Now that computers can do so much, school mathematics programmes should be reduced to

(a) 4 hours per week.
(b) 3 hours per week.
(c) 2 hours per week.

Question 22
List the following topics from school mathematics programmes in order of importance for all students intending to
study at a tertiary level.

(a) Calculus (b) Statistics (c) Geometry
(d) Computing (e) Discrete Maths (f) Calculators

Question 23
Name the most exciting mathematics education resource that you have seen this year. What were its deficiencies? When
will resource producers get it right?

Question 24
List the resources that are needed to help teachers implement Mathematics in the New Zealand Curriculum or A National
Statement on Mathematics for Australian Schools.

Question 26
Summarise your response to each of the following in 3 words:

(a) Who should take responsibility for teacher development and what needs to be done?
(b) My ideal maths education centre has...
(c) My own professional development is my own concern and I have plenty of time to devote to it.

Question 27
Who used to, who does, and who should control mathematics in the senior school?

NZ Questions OR Australian Questions
(a) Ministry of Education (a) The Federal Ministry
(b) New Zealand Qualifications Authority (b) State Ministries
(c) Education Review Office (c) Tertiary mathematics educators
(d) Tertiary mathematics educators (Uni- (MERGA, MELA, ACMS, etc)

versity and Colleges of Education) (d) Australian Association of Mathematics Teachers
(e) Teachers (e) Teachers
(f) Students (f) Students

Question 28
List 5 points for and 5 against the following proposition:
Australia, New Zealand, United States of America and the United Kingdom are all similar cultures andhave similar
problems in mathematics education.

Question 29

One does not get taller by being measured more often.
What effect does this assertion have on your participation in this test?

Question 30
Why is it that Maths educators can't count? Give an illustration from some test in your possession.

Instructions for Marking
Each correct answer is worth four marks and the total can be regarded as a percentage because scaling marks is not
currently fashionable.
All students should be credited with question 25 as none gave an incorrect answer.

© Copying Permitted
Copyright on this item is held by ACER and NZCER who grant to all people actively engaged in education the right to copy it
in the interests of better teaching; just acknowledge the source.
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Item 3

UNLOCKING THE
GREAT SECRET

WRITING REVEALS
THINKING

By Graeme Withers
ACER

HERE'S a common or garden situation found in
every class. The children sit down to work
through a set of exercises. It may be Maths,
or it may be something else. The children may

be 8-years-old, or 15. They do the work. It may be a test
or a group activity.

The yield is always the same a set of papers for the
teacher to mark.

Say it was Maths, in Year 3 (Std. 2): ten examples of
simple number work. Here we have a clever and resource-
ful teacher (with a lot of spare time). She analyses the

papers, and discovers that Alison, who got five out of ten,
was correct on a different five questions from Neil, who
also scored five. With even more time she can discover
exactly what it is that distinguished Alison's set from Neil's

what thought processes or reasoning abilities were called
into play in each case; what was going wrong, what con-
cepts are needed by each child, but not yet grasped.

Why not set up a situation where the students actually
tell us answers to these larger, more fundamental, ques-
tions? Along the way we might make some surprising
discoveries. Alison got five out of ten; so did another girl,
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Kylie, and she got the same five right. However they went
about the problems in different ways. Is there any way of
unlocking the secret of these individual differences, and
building up a clearer picture of the abilities of the two
girls? Yes: get them to write about how they thought.

Process writing across the
curriculum
Over the past twelve months, I have been working with
a group of Australian teachers in the mid-primary school,
and with children of about the age of eight. The study
which initiated this work is aimed at reviewing classroom
practice in teaching and assessing literacy across the coun-
try. It involved getting the teachers to comment on their
teaching philosophies, classroom strategies and assess-
ment criteria, and a large selection of these comments will
eventually be published for other teachers to share.

One strategy which just about all these teachers (there
were over 50 of them) used in their rooms was the ap-
proach to students' writing which focussed on it as a pro-
cess. A rough summary of their strategy might be the
following:
1 Thinking
2 Talking
3 First draft
4 Personal Edit
5 Conference
6 Final form
7 Publish

Most of them made it clear that they used this strategy
in other contexts than just 'Language Arts' or 'English'
They also made it clear that it was a particularly useful
strategy to support work in what they called, generally,
'problem-solving'. They had discovered a way of teaching
not mentioned in the textbooks or in College courses. And
it worked.

Process writing and
problem-solving
Here is an adaptation, by one of the teachers, of the basic
process. She was using it for problem-solving across the
whole curriculum in her room. A wall-display showed to
her 8-year-olds the points in bold in the following table.
Her comments on what actually went on are added in
ordinary type.
1 Listen to the problem.
The teacher or a student tells or reads the problem to the
class. Teacher and class discuss the problem, underlining
important words, and discussing other words or phrases
that students don't understand.
2 Look at the problem.
In pairs, the children read the problem silently or aloud
to one another.
3 Discuss the problem.
The pairs discuss: 'What are we being asked to do? Ho_ w
will we work with the problem?
4 Decide about the problem.
'Shall we draw a picture? Make a list? Make a table? Work
backwards? Look for a pattern?'
5 Try the problem.
Students try, individually, one or more strategies to solve
the problem.
6 Talk to your partner (or, if you're both stuck, to the
teacher) about what you did.
This is the stage called 'Conferencing'.
7 Check your answer.
8 Publish and share your answer.

Donald Graves invented the techniques of 'process writ-
ing' after studying how 'real' authors write, and trying
techniques out in New Hampshire classrooms. Even the
teachers who hadn't read his books often gave pupils at
the 6th stage (conferencing) a conference card. It has a top
flap saying:
You will need:

a pad;
a pencil;
a dictionary.

The main card reads.

Publishing Conference
1 Author reads the work and others watch and listen.
2 Check:

capitals;
full-stops;
commas;
inverted commas;
spelling;

3 Does it make sense?
4 How will the work be published?

This card was used during language work across the whole
curriculum for Maths, Science, Social Studies, Health and
so on, and not just when problem-solving was the main
point of the activity. Children were very used to it, and
cued in to the knowledge that special equipment (cal-
culators and other instruments, for example) would also
be needed during certain sessions, particularly Maths.

A simple example of process
writing in Maths
In her Year 3 (Std. 2) class the teacher set up the following
task: she issued each child with a Maths task sheet which
depicted six jars on a shelf, three shaded (on the left) and
three 'empty' (on the right). The printed stimulus for the
task read:

Jelly Beans
Curly's boss had told him to set up the six jars as a
display for the jelly bean promotion.
'How does it look?' asked Curly, about to leave for
lunch.
'Well, I'd like it better if you alternated full and empty
jars.'
Curly's in a hurry. What's the least number of jars he
needs to move?

The children were asked to try to solve the problem of
alternating the jars using some hands-on method (Unifix
blocks were the most popular item resorted to, initially at
least), and to record the results of this transformation of
the printed problem to 'real-life'. A process writing proce-
dure was undertaken, following the strategy set out on
the wall-chart.

Here is a selection from the final versions of their solu-
tions to the problem, produced by this class of 8-year-olds,
after this process in Mathematics. They are ready to pub-
lish for the rest of the class and to be discussed by the class:
1. First I tried to use the unifix blocks but that didn't

work out. Then I tried drawing a picture, but that
didn't work out either. Then Catherine and I worked
together using cups and marbles, the full ones had
marbles the empty ones didn't. We took about 4 goes
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to get it, and then we got it, well, Catherine did I
should say. All we had to do was to move the marble
from the second jar into the fifth jar. It was so easy,
and the least number of cups we had to move was 1.

2. The answer was 1. At first I used unifix but I wasn't
getting anywhere so Mrs Hockley said I could work
with Jacki. Then Jacki and I got some mugs and very
soon we found the answer. We poured the second
into the fifth jar.

3. First I tried to work out the maths problem with unifix.
But that didn't work because, I couldn't do what I
wanted to do. Then I experimented on paper. But I
still didn't get it. So on paper I drew six jars. I had 3
full jars at the start, and 3 empty ones at the end. I
got the second full one and picked it up and tipped
it into the second empty jar and there was my answer.
It was 1 jar.

4. To fix a problem you need six cup and three marbles
and you get the second morbel and put it in the fifth
cup.

5. First I' tried the unifix blocks. They did not work and
then the paper did not work but then [I used] the
caps I pot the second cup into the fifth cup.

These versions are what the children prepared for publica-
tion, and handed in for their teacher to review. Student
number 3 also handed in his FIRST DRAFT, which showed
her just how far he had come in organising and controlling
his language during the conference process.

First Draft
first I treid to work it out with unfix but that didn't
work because I couldnt do what I whanted to do. Then
I experamented on paper but I still didn't cet it so on
papper I drew some Jars and had 3 full jars at the start
and 3 empety ones the I got the second full one and
tiped it into the second empty and there was my arswer.

Published Version
[Above, Student No. 3]

Writing about thinking
Here is another example from Maths. You may skip this
one if you don't teach Maths and go straight on to the last
sections, Across the curriculum ... and Some implications...
But this example is a good illustration of the last implica-
tion of all students can unlock for you the great secret,
why they went wrong, for you to give them the teaching
that will put them straight.

This time the material comes from a Year 6 class who
were asked to do some writing about thinking. Once again
the subject area is Mathematics, and the task a simple
one, chosen by the teacher because she was curious about
the differences she observed between students' abilities
in the matter of number series. Here is the task:

Complete the following number series:
43 34 54 .... 65 .... 76

And here is the solution:
43 34 54 45 65 56 76

The students used the process writing approach in prepar-
ing the descriptions of how they went about the task but
they carried it out of their own, making notes as they
went. Student number 1 derived the correct answer, and
this is how she went about it:

What you have to do is to look at the first few numbers,
and see what's going on. So I took 34 away from 43,
and got 9. Then I took 34 away from 54 and got 20. So
I sort of used that in the next bit. I took 9 from 54 and
got 45, and then I added 20, and got 65 which was
already there so I knew I was right. Then I took 9 away

from 65, and got 56, and sort of checked it by adding
20, and there was 76, so I had to be right.

Student number 2, however, produced no answer, and
offered the following piece of writing:

I couldn't do it I don't know what you have to do.

These two represented the extremes of the work the
teacher received. Between them emerged a number of
other insights into student ability. Student number 3 gave
the wrong answer, and, in describing how_he went about
it; provided the key to what the teacher had to do next
to improve his understanding of number series and his
ability to solve such problems.

Number 3's answer was 43, 34, 54, 63, 65, 67, 76. His
writing told her that:

I looked for a number between 54 and 65, then I looked
for a number between 65 and 76.

She took the issue further:
Teacher: Why did you choose 67?
Student: Because it's like 76, isn't it?

A sketchy understanding of how certain number series
might work was mistakenly applied to this example
sometimes they do run in increasing order of size, but not
in this case, as the appearance of 34 after 43 might have
told the student. His selection of 67 'because it is like 76'
was an interesting guess, in view of one other student's
solution (discussed below), but no more than a guess.

Number 4 also derived the correct answer, but his de-
scription of how he got it happened to be faulty:

I had to find the formula. And the formula was +9 and
take away 20. So I just went on adding +9 and 20
until all the spaces were full. And I got 45 and 56 for
my answers.

Despite the fact that, in writing the 'formula' it was re-
versed from 9, +20, there is no doubt that the student
could and did solve the number series in a fairly classic
way.

Student number 5 took short-cuts in both solution and
description: he wrote merely:

I took away 9.

There is obviously room for the teacher to point out sub-
sequently that this approach to the problem will not always
work, though it did clearly in this case. [65-9=56,
54-9=45]

However, for the teacher, the most interesting answer
and description came from student number 6. She entered
the correct numbers in the spaces, and also had 67 written
on the end of the given series. Her comment read:

I really guessed because I can't do these things ever.
Because 34 is 43 backwards L thought the first space
might be 54 backwards, which is 45. Then the next
space would be 65 backwards, and the last one 76 back-
wards, which is 67. I hope I'm right.

This completely visual approach to the problem was, in
fact, one that had not occurred to the teacher as a possibil-
ity, and revealed that more ways of thinking than a com-
putational one might be used to assist the solution. Again
it pointed out a weakness in the particular student's under-
standing of number series ('I really guessed ...'), but not
one that would have emerged from a simple ticking or
crossing of answers right or wrong. By that measure, stu-
dent number 6 was as 'right' as numbers 1, 4 and 5, and
various other students in the class.

When the resulting solutions were displayed ('pub-
lished ') on the classroom wall, students were challenged
to read the other explanations, and add to the list if they
found another way of expressing a solution, which several
did. The teacher capitalised on number 6's visual solution
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to offer other kinds of series in later exercises everyone
learnt, teacher included, from this whole sharing process.
A rich process, indeed, when it can expose not only the
accuracy, but also the diversity, of individual students'
problemolving processes.

Across the curriculum and across
the grades
The process is generalisable, according to the teacher, -
beyond Year 3 and indeed beyond the primary school.
Here, for example, is an expanded version of the process
which might be used by teachers in secondary classrooms
in setting up the strategy for their students. The words in
brackets are interchangeable with the word in italics to
indiciate how the basic scheme might fit other tasks in
other classes.

1 Thinking
Consider the best methods of tackling the problem
(essay topic/project/comprehension question). Get the
criteria for assessment from your teacher in advance.

2 Talking
Share your ideas with a partner. Discuss a variety of
different ways of meeting the criteria.

3 First draft
Set out your ideas on paper in point form. Experiment
with different plans or ways of approach.

Try a rough draft. Don't worry about mistakes, but
naturally you should try to be as accurate as you can.

4 Personal edit
Use a calculator (dictionary/instrument/work of refer-
ence) to check your draft. If you find an error, retrace
your steps and find its source.

5 Conference
With a partner, check one another's solution(essay/pro-
ject/answer). Incorporate the suggestions for improve-
ment on your draft. Consult with the teacher if he/she
is available.

6 Final form
Prepare a final version of your work. If your partner
is available, use him/her to give it a final check.

7 Publish
Share your work with others in the class. And share
theirs they will have taken other paths which might
be useful to you in the future.

Some implications underlying
process writing

Every teacher is a teacher of language
You know the rules of your game, as far as language
requirements are concerned the English teachers
know the rules of theirs. Only you can impart the rules
of your game but the English teaching profession
can help with the rules (and the structures) of theirs.

2 Language needs support
It needs lots of dictionaries, thesauruses, specialised
usage books. It needs dictionaries of different kinds,
and at different levels (especially the ESL kids). And
it needs spellers. And it needs them to be always
available. Process writing in other disciplines some-
times needs specialist equipment to allow students to
check their work. The word processor and spelling
program is a huge boost to drafting, correcting, anA
publishing.

3 Process writing does not mean more correction by
you
It does mean more correction, but by the students. It
should mean less correction by you. If you find your-
self doing more, then you're not doing it correctly.
Initially, it might mean more in-class assessment, 'on
the run' as it were, but you should find that even the
need for this decreases as students become more famil-
iar with, and more involved in, the process.

4 Process writing does not mean more preparation by
you
By having the students participate in 'brainstorming'
sessions about the possible outcomes for the work,
which can be recorded and shared, you save yourself
time for thinking about the curriculum implications
of the work rather than the details.

5 Good writing partnerships are crucial
Some will work best in pairs. Two arrangements are
possible students of equal ability, or one advanced
and one less advanced. The former is probably prefer-
able otherwise advanced students miss out on get-
ting the help that they need (and deserve), too. But
you can judge best you're the teacher. In some class-
es, students might work better in threes, or even fours.

Change the partnerships only when you see they
need to be changed, when the pair or group are doing
nothing. Students get used to each other's mistakes
and are on the lookout for them.

6 Self-reliance of the students is a key principle
The more they participate in decision-making, the
more they are committed to action (i.e., learning), and
carrying out the whole task, rather than leaving it
unfinished.

7 Process writing takes class time
'Will I get through the syllabus?' Yes; not everything
has to be done using the process-writing approach.
And you will save time if much of the students' draft-
ing and personal editing is done at home.

8 Language needs modelling by you
You're the professional you know the rules of the
game, in the subject area being worked by the student.
Sometimes these rules can be imparted by simple
structures. But remember that occasionally you will
have to show them how you would do it, quite directly.

9 Students have to know the criteria for assessment
before they begin
A brainstorming session (five minutes) will collect as
many criteria for the work in hand as you will need.
Select from their suggestions, and remember you
don't have to assess everything all the time.

10 The leading mode of assessment by you is diagnostic
Students writing about how they went about a task
will very often unlock, as the title of this article
suggests 'the great secret' just where they went
wrong: what it was that they couldn't do: what concept
they had failed to master.

Notes
Dr Graeme Withers is a Senior Researcher at the Australian Council
for Educational Research, Box 210, Hawthorn, Victoria 3122, Australia.
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OW are my students coping with the
mathematical ideas they confront?' is a central
question. As teachers we choose from a variety
of different assessment techniques, formal and

informal; to answer it. Does the choice of how to assess
matter?

We are sure that it does. Our own observations and
recent research suggests that no method of assessment is
totally adequate. In this article we consider current prac-
tices in assessing mathematics learning in primary schools,
we detail research that suggests some limitations in exist-
ing assessment practices, and we outline a constructivist
approach to assessment.

There have been a variety of different approaches to the
assessment of mathematics. Most are either
1) norm-based written tests,
2) mastery-based written tests, or
3) interview schedules.
A look around schools will find all these methods being
used.

In several parts of New Zealand pre-testing and post-
testing of students is carried out regularly. The tests may
be made up by the teacher or be part of a commercial
teaching package. The written tests are often multiple-
choice or single-answer-required and come in several
levels of difficulty. According to the pre-test results (or
'readiness' tests as they are sometimes called) the teacher
may then group the class for instruction. At the conclusion
of the unit a post-test (or 'mastery' test) is administered. In
some areas this way of evaluating is very common.

Some schools have their own internal schemes for moni-
toring learning. Written tests may be administered by a
syndicate, or group of classes. Schools may use some PAT
norm-based tests recently revised .to show trends and illus-
trate levels. The percentile rankings of individual children
may be recorded on cumulative record cards, and quoted
at parent interviews.

Interview guides are published in the New Zealand
School Mathematics series and are included in the Beginning
School Mathematics scheme under the name 'Checkpoints'.
Typically these interviews provide the exact questions for
teachers to ask, and also the model-answers that teachers
should expect from children if they have successfully
learned the idea being investigated.

The guidelines for assessing learning put out by the
former New Zealand Department of Education (1989)
suggest a descriptive approach with emphasis on what
processes children use as they work. For example, the
guide suggests that assessment should take many forms
using a variety of methods best suited to the needs of the
learner, and that assessment should be thought of as gath-
ering information about the progress of learners. In
Australian schools the equivalents of these techniques are
also much to the fore.

Evidence of limitations
Are these ways of assessing mathematics adequate? We

have found evidence that some frequently used ways
are not.

Recently, after a group of student teachers had tried out
several forms of assessment, they commented

Administering the written tests raised many
questions . . . By themselves, I found the tests didn't
show a realistic indication of what the children knew.
Children were very cautious of the (written) test and it
took some encouraging to convince them that there was
no pressure to pass or to do well.

The student teachers found more value in other assessment
strategies.

By themselves I found that the tests didn't show a realis-
tic indication of what the children knew. Only by back-
ing up the written tests with oral questioning to each
child, could I gain a true indication of what the children
knew and how they thought.
In research interviews we have found that children use a

large number of different strategies when solving mathe-
matics problems (see Table 1).

Table 1 .

Proportions of.a sample of 42 children (aged 8 and 9)
giving ways of correctly solving two problems

Number of valid ways given
Problem 1 2 3 4 5 or more

5 + 7=f 29% 38% 13% 16% 4%

14 +[ 1=26 42% 36% 16% 6%

Note: The interviewer's question was 'How did you get
your answer' followed by 'Can you tell me of any other
ways of doing the problem'. The number of valid ways
given by children is an under-estimate of the number of
ways that they actually know.

For some problems almost every child knows of a num-
ber of different strategies. Children often switch strategies
(sometimes in the course of solving a single problem).
Many other researchers have noted the same. Also children
approach school mathematics in different ways from the
ways that they approach mathematics in the world and are
often able to solve in real life mathematics problems that
they can't do in the classroom. Researchers Denvir and
Brown found that pencil and paper assessment procedures
are not sufficient to indicate children's mathematical
achievement, and others have found that teachers who rely
a great deal on pencil and paper tests for mathematics
assessment have lower learning gains in their class.

Problems of norm-based and mastery-
based assessment
1. Mastery-based assessment methods often lack reliabil-

ity or validity
The reliability and validity of mastery tests is commonly
ignored. The assumption is that if items appear to

measure the objectives of instruction that the test will be
reliable and valid. It is equally important that reliability be
established for mastery tests as for norm-based tests. Few
mastery tests have their items scrutinised to ensure that the
items

... measure their respective objectives, are unbiased in
relation to women and minority groups, and differenti-
ate between groups of masters and nonmasters of the
objectives (item discrimination). In addition they must be
free of structural flaws that could cue or confuse
students. (Berk, 1988, p. 367).
Both standardised tests and mastery tests do not take

account of the strategy shifts that children may show.
Thus, the reliability of these tests should be seen as reliabil-
ity in a statistical sense only. For even though a child may
get the same answers on a retest, the strategies used can be
quite different.

2. Item scores in norm-based and mastery-based tests do
not indicate the knowledge used in passing the item

In norm-based and in mastery tests there is a fundamental
assumption that 'to pass is to know'. But we may ask to



pass is to know what?' Children can answer the same ques-
tions using quite different strategies. Behind different solu-
tion strategies can lie marked differences in children's
knowledge.

A further challenge to test validity is found in research
that shows that children can solve real-world problems
which (on the basis of pencil and paper tests) we would
predict that they cannot do. This suggests that the validity
provided by mastery and norm-based tests is not the kind
of validity needed by teachers who want a pupil's learning
to be relevant beyond school. Norm-based and mastery
tests may show children's ability to solve 'school maths',
but they are not able to indicate children's performance in
a wider mathematics context.

3. Assessment can hijack the curriculum
If teachers take the results of test-based assessments too
seriously, thinking that they do indicate real knowledge,
then the curriculum can become orientated to the test and
teachers will teach to increase pupils' scores on the tests.

Testing for standardisation can lead to teaching for tests so
that the pupils can be seen to be successful.

Also almost all traditional mathematics assessment
involves pencil and paper tasks and teachers and learners
may come to see mathematics as pencil and paper exer-
cises. If instead, assessment in mathematics takes children's
ability to use mathematics in the world into account, then
worksheets and textbooks will be seen to be insufficient.

A teacher may not be diverted by formal assessment
procedures, but pupils will be. Erlwanger interviewed
children engaged in self-paced maths programmes and
found low levels of cognitive learning. The children
viewed mathematics as a game in which they had to do no
more than guess the answer in the answer key.

4. Assessment outcomes may limit children's learning ex-
periences

It is often assumed that if a test shows that a child cannot
do a topic then the child should not be introduced to other
'harder' topics. That is challenged by current research on
two counts.

Firstly, so-called 'harder' topics are often easy for child-
ren. Curriculum developers can get 'easier' and 'harder'
wrong. Young-Loveridge and Irwin have found that child-
ren often show facility with subtraction before addition.

Secondly, children's experiences affect the ease or diffi-
culty they have in dealing with mathematical materials.
Blades and Spencer found that young children can coordi-
nate references in a grid if the grid is labelled with familiar
symbols rather than numerals. We have observed that
children from mathematically disadvantaged backgrounds
find working number problems with money easiest
because they have had experience with money. So children
may be able to learn more advanced topics provided the
topics link into familiar contexts.

5. Pupils are misclassified by tests
This is perhaps one of the most serious consequences of an
over-reliance on standardised written test results. In well
researched trials such as those of Denvir and Brown, it has
been found that a significant number of students get
misclassified (25% of students were misclassified, almost
always to a lower level than they should have been). With
unvalidated tests the level of misclassification is even
higher. Thus relying on test results alone to control where
pupils are in a mathematics programme limits children's
progress.

6. It is difficult to get conditions for carrying out a valid
assessment

Standardised tests require testing to be carried out in a
silent non-distracting environment. Other pencil and paper

tests, such as mastery tests, should also be carried out in
such conditions. Invigilating is also required we have
observed that children will often exchange answers in
order to hide their weakness. In the typical classroom it is
difficult to get ideal test conditions.

Also, for any item to validly indicate mathematical
understanding, the child has to understand the question or
task. For that reason, the interview may be preferred.
Unfortunately. the interview requires an uninterrupted
period of one-to-one interaction between teacher and child
and if there is only one teacher per classroom such condi-
tions rarely occur.

A constructivist alternative
r he evidence is clear: teachers should not rely on writ-
1 ten tests alone to assess learning in mathematics. There
is need for a broader approach. A constructivist approach
is one which emphasises the pupils' involvement in the
assessment of their own learning; the teacher assists the
learners in their own efforts to assess what they have
learnt.

Examples are: having children describe the ways in
which they have gone about solving problems, allowing
children to discuss problems amongst themselves, getting
the child's own description of mathematical concepts.
Many teachers already engage in some assessment prac-
tices which we would call constructivist.

Constructivist assessments result in teachers gaining an
idea of the mathematical ideas and strategies of the learner.
The learner gains an appreciation of the knowledge that
they have and where it is not sufficient to understand situ-
ations. Thus the goal is development of the processes and
experiences by which learning occurs.

Practically, this approach may involve teachers and
learners in exercises that seem more like learning and
teaching than assessment. For example, the teacher may
get children to describe to each other the way that they
solve problems whilst the teacher listens or records. Or,
children might write out a list of the problems that they get
the wrong answers to, and then they reflect on whether
there is anything about the problems that creates the diffi-
culty.

Interviews are good when used constructively, but the
realities of the classroom do not allow them to be used as
the main method. However, if a teacher is in doubt about a
child's readiness to start on more advanced topics then
interviewing the child as they do mathematics will give a
detailed picture of the child's knowledge. In the interview
the teacher should pose similar problems in different
contexts'to find out if there is a solid foundation of out-of-
school mathematical experiences that the child can draw
upon. The interview can provide the teacher with informa-
tion on how the child goes about solving problems, about
sources of puzzlement, and about the questions they ask
themselves all information which is not available from
written tests.

Conclusion
We need to reconsider the strengths and limitations of
the assessment devices that we use in our class-

rooms. Norm-based tests are useful for ranking students.
Mastery tests provide some indication of children's ability
to do items from a particular domain of knowledge. But
neither of these can give us precise guidance on how to
improve the learning of those who have failed and those
who have passed the tests. Only by observing and listening
to learners as they solve mathematical problems and
pursue investigations can we get the type of information
that will help us plan for better learning.

N
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is item has been adapted by the authors from their
chapter, 'Understanding Children's Mathematics:

Some Assessment Tools', in Assessment and Learning Math-
ematics, edited by Gilah Leder, and published by ACER in
1992, and describes advances in formative assessment, and
new helpful techniques.

Introduction
In our decisions about how and what to assess, the kinds
of learning that we value (and consider worthy of rec-

ognition and reward) are made explicit. Our students, and
frequently their parents, other teachers and the wider
community, recognise this. In the final analysis, what we
say we want to do (through our curriculum statements)
is less important than what we emphasise through the
assessment processes we use.

This principle has been long understood. It was recog-
nised by Benjamin Bloom and his associates in the 1950s
when they developed the Taxonomy of Educational Objec-
tives as a means of encouraging curriculum planners and
test developers to attend to a broader range of learning
goals. It also underlies recent initiatives to broaden as-
sessment procedures to include performance assessments,
problem solving, independent research projects, group
work, and the evaluation of portfolios of student work.
Curriculum reform must be accompanied by assessment
methods that support and reinforce reform. Most impor-
tant of all, assessment methods must fit with how we learn
- and provide feedback to assist learning.

Much mathematics assessment reflects a traditional
view of mathematics teaching and learning in which
teaching is the presentation, and learning is the mastery
of specified bodies of facts and skills. Thus, in conven-
tional tests and examinations, mathematics is treated as a
relatively fixed body of knowledge, facts, algorithms and
proofs. During instruction these facts and skills are or-
ganised and presented in logical sequences, and, in the
jargon of more recent times, subsets of 'behavioural ob-
jectives' are specified for each 'instructional module'. In
this traditional approach to mathematics teaching:

Mathematics is assumed to be a static bounded disci-
pline... Within each subject, ideas are selected, sepa-
rated, and reformulated into a rational order. This is
followed by subdividing each subject into topics, each
topic into studies, each study into lessons, and each
lesson into specific facts and skills.

Such an approach to mathematics teaching is a 'top-
down' approach in the sense that its focus is on the deliv-
ery of knowledge. The order of presentation is logical
and mathematically consistent, at least from an adult point
of view. Programs of study and lesson modules are
planned around sequenced instructional objectives, and
the role of the teacher in the process is to present material
in a manner that is motivating and understandable.

Learning, under a top-down approach, is largely recep-
tive and passive. Students are presented with facts and
algorithms to be committed to memory and recalled and
applied when required. The desired outcomes are spelled
out ahead of time as precise, observable bits of behav-
iour. Assessment is, therefore, relatively straightforward.
The starting point is a list of the objectives of the course
and a list of directly observable behaviour which can be
reliably recorded as either present or absent. The objec-
tives should be 'stated in terms which are operational, in-
volving reliable observation and allowing no leeway in
interpretation'. To achieve this degree of reliability, test
constructors are encouraged to write items to assess the

ability to perform unambiguous, observable tasks such
as 'stating', 'listing', 'naming', 'selecting', 'recognising',
'matching' and 'calculating'.

Multiple-choice items have become especially popular
in assessments of this kind because they can be scored
quickly, unambiguously as right or wrong, and even by
machine. There is usually no interest in a student's incor-
rect response beyond its value as evidence that he or she
has failed ('to display the correct behaviour on that item').
_ ,Such tests are easily. .administered fOi summative pur-
poses. In this case interest focuses on the proportion of
mastered objectives. Have students mastered sufficient
objectives to be awarded a 'pass' in the course? Have they
mastered sufficient objectives to be awarded an 'A'?

However, even such conventional mathematics tests
can, as well, be used for formative purposes i.e., for diag-
nosis and remedial teaching. Interest then focuses on the
checklist of behavioural objectives and, in particular, on
those objectives not yet mastered. Because learning is
viewed as a process much like adding bricks to a wall,
failed objectives are seen as 'gaps' in a student's learn-
ing. Diagnosis is the process of identifying missing
knowledge and skill so that remedial teaching can be un-
dertaken to fill those gaps, add those bricks.

A constructivist approach
School learning rarely occurs as a passive, receptive
process of the kind implied by much of our past cur-

riculum and assessment practice. Learning is an active,
constructive process. Through it we develop our own in-
terpretations, approaches and ways of viewing phenom-
ena. We also, as we learn, relate new information to our
existing knowledge and understanding.

Under this new, researched, view of learning, students,
when addressing a problem, are rarely considered to have
no understanding and no strategies. Even beginning
learners are considered to be engaged in an active search
for meaning, constructing and using naive representations
or models of mathematics. Rather than being 'wrong',
these representations frequently display partial under-
standing and are applied rationally and consistently by
those who use them. In arithmetic, for example:

... it has been demonstrated repeatedly that novices
who make mistakes do not make them at random, but
rather operate in terms of meaning systems that they
hold at any given time.

and
Children are not passive learners who simply absorb
knowledge. Children come to school with rich infor-
mal systems of mathematics. They actively structure
incoming information and attempt to fit it into their
established cognitive framework.

The recognition that much learning occurs as a construc-
tive process has far-reaching implications for teaching and
assessment. Most importantly, it shifts the focus of in-
struction from the delivery of static, 'correct' mathemati-
cal knowledge to the attempt to understand learning from
the perspective of the learner. Teachers can assist learning if
they first go to the trouble of investigating and under-
standing the naive and incomplete systems of mathemat-
ics that individuals invent and use. In other words, teach-
ers must become not only deliverers of mathematics
knowledge, but also researchers into their own students'
learning. Through an appreciation of mathematics as ex-
perienced by learners, teachers are better able to assist
students to modify or revise their personally constructed
systems of mathematics.



A constructivist view of learning also has far-reaching
implications for assessment. It becomes a process of
collecting observations to build a picture of the learner's
conceptions and systems of mathematics. This requires a
new set of skills on the part of teachers and assessors,
and new ways of thinking about the assessment process.

Formative assessment, for example, is less likely to be-
gin with checklists of behavioural objectives and a search
for 'gaps' (unmastered objectives) and is more likely to
begin with an attempt to identify the conceptions students
have developed (of particular mathematical processes)
and to identify the rules with which they are operating.
Often it may not be possible to extract information of this
kind from written attempts at conventional mathematics
tasks, and further investigation through verbal question-
ing may be required. Summative assessment is less likely
to be concerned with establishing the percentage of test
questions answered, and more likely to attempt to de-
scribe the levels and kinds of understanding achieved.

Developing assessment tools
Agreat deal of research has been done in recent years

vestigating the variety of conceptions, meaning sys-
tems, and 'mal-rules' that students invent for themselves
in mathematics. Some consideration has been given to
the implications for changing mathematics teaching, but
very little to reforming assessment. In practice, most
mathematics testing continues to reflect the view that
mathematics learning is a process of memorising isolated
facts and algorithms and recalling and applying these on
demand.

New approaches consistent with our current under-
standing of how mathematics is learnt are required, and
new assessment tools. These approaches and tools will
have one overriding objective: to provide a better under-
standing of mathematics as it is experienced by learners.
They will be research tools, available to teachers, to make
the investigation of their own students' learning easy.

Three tools to help us understand mathematics learn-
ing follow. Each of these takes the form of a map for dis-
playing and studying classroom mathematics learning.
These maps are not abstract or theoretical. They are pic-
tures of mathematics as experienced. They can be con-
structed only by making and recording observations of
students attempting real mathematics tasks. The three
maps we describe and illustrate in this chapter provide
successively more detailed pictures of mathematics
learning.

Tool 1: A curriculum map
In traditional mathematics instruction, ideas are 'selected,
separated, and reformulated into a rational order'. This
reformulation provides instructional sequences which are
logical and mathematically consistent from an adult point
of view. Sequences of this kind can be found in most cur-
riculum documents.

Chart 1, for example, shows a recommended sequence
for teaching the naming of fractions to primary school
children. This is one of a number of instructional strands
described in The Mathematics Framework P-10 of the Victo-
rian Ministry of Education (1988). Under these recom-
mendations, teachers begin (Level 2) with activities that
introduce the terms 'half' and 'quarter' in informal
conversations. Later (Level 3), children are given
opportunities to make halves and quarters using objects
such as counters and blocks. Once children have had some
practice in making halves and quarters, they are intro-

duced at Level 4 to conventions for recording halves and
quarters in writing and are given opportunities to make
and name other unit fractions (such as 1/3 and 1/6). Chil-
dren carry out activities involving fraction families (6/
10, 7/10...) at Level 5, and at Level 6, find fractional parts
of quantities and compare quantities.

The sequence in Chart 1 is an apparently logical se-
quence of activities developed, no doubt, by experienced
mathematics teachers. But to what extent does it reflect
h2w children learn to name fractions.? Is it based more on
logical analysis than on'obServations of children? Could
a more useful sequence be developed by paying closer
attention to the ways in which most children learn to name
fractions?

Chart 1
Five Levels of Progress in Naming Fractions

The central question we are asking is, 'How does this
aspect of learning appear from the perspective of the
learners?' This question is answered not by logical analy-
sis but by empirical task analysis. A curriculum map is
based on such an analysis of what children find easier
and harder, in practice.

A small study we conducted several years ago provides
a useful illustration of the construction of a curriculum
map. We developed 12 fractions activities, each matched
to one of the levels in Chart 1. The 12 activities (Chart 2)
were based on familiar classroom objects such as fractions
blocks. The activities were introduced (in sequence, start-
ing with activity 1) to 28 Year 3 (Std. 2) children and 23
Year 5 (Std. 4) children in face-to-face interviews. Each
child's attempt at each activity was recorded as either
successful or unsuccessful.

Chart 3 shows a curriculum map constructed from the
performances of these 51 children on the 12 fractions ac-
tivities. This version of the map shows the difficulty level
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of each of our 12 activities and the average performance
levels of the Year 3 and Year 5 children (8- and 10-year
olds). (The maps in this chapter were constructed using
a computerprogram we have developed for this purpose.)

A numerical scale runs up the middle of the map, but
this can be ignored for the moment. More interesting are
the relative difficulties of the 12 activities plotted on the
right of the picture. These difficulties are based not on a
logical analysis of what each activity entailed, but on an
empirical analysis of children's success rates. The activ-
ity these children found most difficult was Activity 11
(naming and writing 3/8). The activity they found easi-
est was Activity 3 (naming a half). In fact, this one is
shown off the scale at the bottom of the page because all
51 children could do it.

The average Year 3 (Std. 2) performance is near the mid-
dle of the activities on the scale, suggesting that many of
these children are still learning to name fractions. The
average Year 5 (Std. 4) performance is above the set of
activities, suggesting that many of these children have a
good grasp of naming fractions.

It is interesting to compare the empirical difficulty or-
der of these activities as displayed in Chart 3 with their
order by level in Chart 2. In practice, these children found
Activity 3 and Activity 5 easier to carry out correctly than
Activities 1 and 2. For these activities the 'logical' order
of levels is not the order of experienced difficulty.

Chart 2
Twelve Fractions Activities

Level Activity

5 12 Show student a unit and put 12 red twelfths on
top. Take away 2 twelfths. 'Write down the
fraction that is white.'

11 Show student a unit and 8 green eights. Place 3
eighths on the unit. 'Write down the fraction that
is green.'

10 Show student a unit and put 10 orange tenths on
top. Take one away. 'Write down the fraction
that is white.'

9 Show student a unit and 5 orange fifths. Place
one fifth on the square. 'Write down the fraction
that is orange.'

4 8 Show student the cards with 1, 1/3 , 1/6 and
1/9 written on them. Give student a red sixth.
'Which card goes with this block?'

7 Show student a unit, the thirds, sixths and ninths.
Give student the card with 1/3 written on it.
'Show me a block that matches this card.'

6 Show student the cards with 1, 1/2, 1/4 and
1/8 written on them. Give student a green quar-
ter. Which card goes with this block?'

5 Show student a unit, the halves, quarters and
eighths. Show student the card with 1/2 written
on it. 'Show me a block that matches this card.'

3 4 Put three green quarters on top of the white
square. 'How much of the square is white?'

3 Put down a white square. Place a green half on
top. 'How much of the square is green?' or 'What
fraction of the square is green?'

2 2 'Now give me half of an eraser.'
1 Show student the three erasers, one whole,

one cut in halves, the other in quarters.
'Give me a quarter of an eraser.'

Chart 3
Fractions Activities Calibrated on a Curriculum Map

Class: Grades 3 and 5
Topic: Naming Fractions

Children Activities
High Scorers

. _

Harder

90

80
Average Grade 5 ....

70
II Write 3/8
12 Write 10/12
10 Witte 9/10
7 Show 1/3

60
9 Write 1/5

8 Show 1/8

Average Grade 3 .... 50

8 Show 1/4

40

4 Name 1/4
2 ItaW an object
1 'quartee of an object

30
5 Show 112

20

10

Low Scorers Easier

3 Name 1/2

An inspection of Activities 3 and 5 shows that they both
involve the concept of a 'half', one requiring children to
recognise and name half an object, and the other requir-
ing the matching of the symbol 1/2 to half an object. While
the levels described in the mathematics curriculum
(Chart 1) suggest that halves and quarters be introduced
together and that fractions activities be sequenced:

informal use of making recording
the children in our study found activities involving halves
easier than activities involving quarters, no matter
whether they involved informal use, making or record-
ing.

We have used this observation to construct a second
version of our fractions curriculum map (Chart 4). To con-
struct this map we defined four activity types: tasks in-
volving halves, tasks involving quarters, naming and re-
cording other unit fractions, and naming fraction fami-
lies. Chart 4 shows the difficulties of the 12 activities by
type.

On the left of the map we have replaced the average
Year 3 (Std. 2) and Year 5 (Std. 4) performance levels with
the distribution of all students' performance levels. No-
tice that two Year 3 (Std. 2) students were unable to com-
plete any of the activities, except Activity 3, and so ap-
pear off the scale at the bottom. Eight Year 5 (Std. 4) stu-
dents completed all activities correctly and so are placed
off the scale at the top.

Clustering the activities in this way assists in studying
the kinds of activities students found easier and harder.
It is tempting to conclude from these observations that,
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when teaching fractions, teachers should concentrate first
on the concept of a 'half', giving children opportunities
to use the term informally; make, identify and name
'halves'; and record halves using the symbol '1/2' before
moving on to quarters. Our small study does not pro-
vide sufficient data to make such a recommendation with
confidence. We use this example merely to show how a
curriculum map can be useful in displaying the results of
an empirical analysis to inform curriculum decisions.

There is another important feature of Chart 4. On a
curriculum map, children's performance-levels and activi-
ties' difficulty-levels are recorded on a common scale. This
enables statements to be made about what is typical of
children at various levels of performance. The two Year 3
(Std. 2) children located at 30 on the scale are at a level
where most children are coming to terms with the con-
cept of a 'half'. The six Year 3 (Std. 2) children located at
52 are at a level where children (typically) have a good
sense of halves and quarters but have not yet come to
terms with other unit fractions (1/6, 1/7, and so on).
The nine students at 78, although they did not complete
all 12 activities correctly, have a good understanding of
how to name, make and record fractions.

Chart 4
Fractions Activities Grouped by Type on a

Curriculum Map

Class: Grade 3 (o) Grade 5 (
Topic: Naming Fractions

.Childreneseense Activities
High Scorers

so

Harder

80
000111140110

mows 70

I Name traction lodes
00011110

OW
60

Name 6 record wit tnictlons
I

000000
50

00

0011
40 Tasks Involving quarters

coo.
ri

00 30 I
Tasks involving hems

20

10

Low Scorers Easier

co

This approach to displaying children's performance can
be contrasted with the traditional method of reporting test
results. Traditional test results would show 9 correct out
of 12, or a percentage (75%), with no attempt to describe

194S:

what students with a result of 9 (or 75%) are able to do.
The curriculum map provides an empirically-based de-
scription of what children at various levels of perform-
ance along the map are, on average, able to do.

Tool 2: An individual map
A curriculum map is a useful picture of achievement

..for an entire group of learners. It glows which ac-
tivities the group finds easier and which the group finds
harder. This enables individuals' performances to be de-
scribed and interpreted in the context of typical results.
As such, it can be a valuable classroom tool. But a cur-
riculum map does not show an individual's results on
specific tasks. For that level of detail, we use an individual
map.

Chart 5 shows an example of an individual map. This
map displays the results of a single student, Tony, on a
classroom mathematics test. Tony's level of test perform-
ance is marked by the shaded box centred on 56 on the
vertical scale in the middle of the map. The code num-
bers of the questions Tony answered correctly are shown
on the left of the page; the questions he answered incor-
rectly are shown on the right. As in Charts 3 and 4, items
are located at their estimated difficulty levels on the scale.
Students in this school found item E10 the hardest and
item C09 the easiest to answer correctly.

Chart 5
Tony's Individual Map Showing Subtraction Errors

Name: Tony

Class: Year 3 (math.)
Date: November
Fit:.

Right Wrong
Hard

E18

E20 E08

012
018

018 015
EIS 019 D09 C20

D20 007 C19

E02 D11

Easy

E01

D15
018
E18
E08
DOS
C18

C10
C19

C12

C17
CO8

E17 E12 E09 E015

004

CO4
CO8

CO2
C01

COS.
DO8

90

80

70

50

40

30

20

10

010 Ell

Problem here
(subtraction)

Hard

Easy

CO9
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It can be seen from Chart 5 that, in general, the ques-
tions Tony answered incorrectly were the ones the entire
class found more difficult. He had the 17 easiest ques-
tions (below,30 on the scale) right, and five of the six most
difficult questions wrong. Of interest are questions to-
wards the bottom right of the map: questions that most
children found relatively easy but Tony had incorrect. Our
computer analysis has drawn attention to the fact that
Tony gave some surprising answers by printing a '?'
against the word 'Fit' at the top of the page.

Four of the questions Tony answered incorrectly in-
volved subtraction, suggesting he finds subtraction diffi-
cult. This was made clear in further classroom testing.
While he appeared to have little difficulty with questions
involving addition, multiplication and order of operations:

for example 2 x 2 + 3 x 2 = ?

he frequently gave incorrect answers to relatively easy
questions involving subtraction:

for example 9 + 6 - 2 = ?

The value of an individual map of the kind shown in Chart
5 is that it displayi results conveniently, making it easy
for teachers to identify atypical/unusual patterns of suc-
cess or failure. Once an area of difficulty is identified,
teachers can undertake a more detailed diagnosis of the
problem.

Tool 3: A response map
Assessment can be useful for identifying the kinds of un-
derstanding, the rules and the models that students have
constructed and are using. An individual map is useful
for drawing attention to areas of difficulty; however, more
detailed investigation may be required. This may be pos-
sible through interviews and analyses of students' solu-
tion processes. _

Research into mathematics learning is providing us with
descriptions of students' common conceptions and solu-
tion processes. For example:

The research on addition and subtraction has identi-
fied a progression of concepts and skills that is gener-
ally not reflected in instruction. Most instruction jumps
directly from the characterization of addition and sub-
traction using simple physical models to the memori-
sation of number facts, not acknowledging that there
is an extended period during which children count on,
and count back, to solve addition and subtraction prob-
lems.
Similarly, Carpenter and Moser in 1984 identify several

solution strategies to single-digit addition tasks which
children commonly use. These are listed in Chart 6. They
found that some 6-year-olds are unable to solve problems
like 6 + 8 = ? even when given objects to count (Category
0). Others solve problems of this kind by counting out 6
objects and 8 objects and then counting all 14 (Category
1). Still others arrive at an answer by counting on either
from 6 or from 8 (Categories 2 and 3), while older chil-
dren use number facts (tables) to arrive at an answer (Cat-
egory 4). This group of children were tracked from the
beginning of Year 1 (J.3 and 4) to part way through Year 3
(Std. 2).

Chart 7 shows how the proportions of children using
each of these addition strategies changed from the begin-
ning of Year 1 U.3 and 4) (bottom of Chart 7) to one-third
of the way through Year 3 (Std. 2) (top of Chart 7). Notice
that, at the beginning of Year 1 (J.2), 15 percent of these
children were unable to solve 6 + 8 = ? This dropped to
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Chart 6
Outcome Strategies for Single-Digit Addition of 6 and 8

Category

4

3

2

1

0

Description

Does not need to count objects, but uses
number facts:

6 + 8 = 14
Always counts on from large number:

8; 9, 10, 11, 12, 13, 14
May count on, but not consistently from
the larger number:

6; 7, 8, 9, 10, 11, 12, 13, 14
Counts out 6 objects and 8 objects and
then counts them all:

1, 2, 3, 4, 5, 6; 7, 8, 9, 10, 11, 12, 13, 14
Unable to solve

zero percent two-thirds of the way through Year 1. At the
beginning of Year 1, nearly half the children in this study
solved 6 + 8 = ? by counting out 6 objects and 8 objects
and then counting all 14. But, by the time they were two-
thirds of the way through Year 2 (Std. 1), no student was
using this strategy. The number of students using memo-
rised number facts to solve 6 + 8 = ? increased steadily to.
about 70 percent of children one-third of the way through
Year 3 (Std. 2).

Chart 7
Response Map for Single-Digit Addition

Class: Grades 1 through 3

Topic: Single-digit addition

(3)

Co

Counts on from
larger number
consistently

Uses number
facts to solve

Proportion

We refer to Chart 7 as a response map because it displays
the different ways in which students respond to a task
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and shows how these responses change with increasing
age or mathematics ability. This map draws attention to
the range of strategies children use in their first few years
of school. It-also provides a framework for analysing and
thinking about an individual child's progress:

The ultimate goal of the research is not just to describe
different strategies that students use. The objective is
to clearly describe the development of addition and

subtraction concepts and skills, and build models that
specify the knowledge necessary for performance at
each stage of development.

Chart 7 suggests little reason for concern if a child is not
counting-on consistently from the larger number by the
middle of Year 1 (J.2 and 3). But if the same child is still
not using this strategy by the end of Grade 2 (Std. 1), that
could be a cause for concern.
_ - -

Conclusion
ctudents' pre-conceptions of number, the meaning sys-

tems they construct for themselves in school mathemat-
ics, and the variety of strategies they use to address math-
ematics problems, have been the subject of detailed in-
vestigation in recent years. This research has drawn at-
tention to the many different ways in which students con-
struct meaning for themselves and will have a growing
impact on how mathematics is taught.

Parallel changes are required in the way we assess
achievement. Much of our current assessment practice in
mathematics is derived from a traditional view of learn-
ing as a passive, receptive process through which facts
and algorithms are presented, absorbed and reproduced

when required. A constructivist view aims not at adding
up how many facts and skills students have mastered, but
at giving a picture of each individual's conceptions and
systems of mathematics.

Assessment of this kind requires a new set of skills by
teachers and assessors, and new ways of thinking about
the assessment process. There will also be a need for
assessment methods and instruments that teachers can use
as research tools.

The three maps described in this article have been de-
veloped as tools for understanding mathematics as it is
experienced by learners. They have been found useful in , .

large-scale testing with 60 000 students and in classroom
studies with as few as 60.
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Item 6

What Mathematicians Do
and why it is important

in the classroom
Derek Holton

University of Otago

HE ONLY NECESSARY PREREQUISITE for reading
this article is that, at some time or other, you have failed to
balance your cheque book.

1. What do mathematicians actually
do?

T have wondered for years why more students don't enjoy
1 mathematics. I spend, and enjoy, a great many hours
each week doing something which is, apparently, anath-
ema to almost everyone else. Why is this so?

Leaving aside obvious answers about my twisted per-
sonality, I think the problem is that schools and universities
usually teach only a small part of what mathematicians do.
I suspect that the most exciting part of mathematics is too
often kept out of sight of children. So let's see what
research mathematicians do.

1. New Problems

First, mathematicians look about for new, worthwhile,
unsolved, problems; mathematics is not all sewn up, done,
and finished. There are in fact, more open problems today
than there have ever been before, but it is very difficult to
explain most of them to a layman. These problems require
too much preliminary mathematics; to even understand
the question, you often need to have studied for many
years.

But there are still some problems that can be easily
explained. One of these is the so-called Fermat's Last
Theorem. He wrote in the margin of a library book that he
had a proof of the result 'but the margin is too small to con-
tain it'. I hope he was banned from the library! He should
certainly have been banned from the mathematicians'
guild: his tantalising scribble was made about 1650 and
there is no known proof of the result even today.

So what is the problem? Well, most people know
Pythagoras' Theorem. The square on the hypotenuse (the
long side) of a right angled triangle equals the sum of the
squares on the other two sides.

Algebraically we can write this as x2 + y2 = z2, where z is
the length of the hypotenuse and x and y are the lengths of
the other two sides. There are whole numbers (integers)
which we can use instead of x, y, and z and end up with a
true statement. These are called solutions to x2 + y2 = z2

The famous 3, 4, 5 triangle used by builders from ancient
Egypt to the present day to get a right angle, is one solu-
tion since 9 + 16 = 25 (32 + 42 = 52). But a sort of 3-dimen-
sional version of Pythagoras doesn't seem to work:
(33 + 43 0 53); 27 + 64 does not equal 125. Does it ever
work? What about x4 + y4 = z4? Does that have integer
(whole number) solutions for x,y,z?

As far as we know x" + y" = z" has no solutions in which
x,y and z are whole numbers once n is greater than 2. But
no-one has been able to prove this, despite Fermat's claim
in the margin. So, there are still unsolved questions in
mathematics. What else do mathematicians do, after they
have found a problem?

2. Experimentation
When faced with a problem like that of Fermat, that can't
be solved immediately, our mathematician plays around
with it. In the case of Fermat's problem, the natural thing
to do would be to try n = 3 and see if there are some inte-
gers x,y,z for which x3 + y3 = z3.

Having shown that there are no integer solutions in the
case of n = 3, the next step is obvious. Test n = 4.

3. Conjecture
After some time working this way, the mathematician
would be forced to conjecture.

C.1. For whole numbers n bigger than 2 you cannot get a
whole number answer to xn + y" = z".

The conjecture has firmed up the problem (if it hadn't been
firmed up from the start). Most frequently this is where the
mathematician's experience and intuition come into play.
Guessing the right conjecture is almost always the key step
in finding new results.
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4. Proof
The conjecture needs to be established as true, or con-
demned as false. We need a proof or a counter-example:
just one case which doesn't fit the conjecture dooms it to
failure.

And now the mathematician is on a see-saw. Try to find
a proof. If you can't get all the way with a proof, find a
counter-example. If you can't find a counter-example, try
to find a proof following a different route. How this cere-
bral process works is anyone's guess. But generations of
mathematicians have made progress this way. Even when a
proof is found, the mathematician's work still isn't done.

5. Generalise
Suppose we have proved the conjecture C.1. How might
we generalise or extend it? A generalisation might be

G.1. For whole numbers n bigger than 2 there are no
fractions x,y,z such that x" + = z".

Since whole numbers are fractions (5 = etc.) G1 is a gen-
uine generalisation of Cl. That is, Cl is a special case of G1.
Proving the generalisation G.1. would immediately settle
the Fermat Conjecture. So far, it hasn't been done.

An extension is a result which somehow grows out of the
first result but is not a true generalization. An extension of
Fermat's Conjecture is

E.1. For whole numbers n greaterthan 2 you cannot get
a whole number answer for x" + y" + z" =

Now we are looking at four integers. So it is an extension
rather than a generalisation. (By the way, even if you could
get an answer, that would not completely prove the Fermat
Conjecture, unless z can be zero.)

Mathematicians progress and develop a whole field of
knowledge by this process of generalisation and extension.
It is worth looking into any maths textbook to see how this
process has worked there.

Although in the final published version, results are pre-
sented in large steps, they are usually developed in very
small steps. Settling a host of little conjectures is usually
the only way to achieve one reasonable-sized conjecture.
It's often considered that knowing the right questions to
ask, that is, making the right small conjectures, is really the
heart of mathematics. A good mathematician is one who
knows the right questions to ask.

Having developed a whole theory though, the mathe-
matician is back at step one, looking for a problem. But if
our mathematician is proud of the whole theory she or he
will certainly want to spread it around.

6. Publication
Mathematicians don't accept every problem as worthwhile.
Generally speaking, a result which doesn't have any gener-
alisations or extensions which are of interest, is not thought
worth spending research time on. Problems set for the
International Mathematical Olympiad competition for sec-
ondary students are often in this category. They are not
trivial questions but they don't lead anywhere; they are
good for learning the mathematician's trade but they don't
push mathematical frontiers forward.

What is considered a good problem may also be a mat-
ter of fashion. For instance, Gauss, one of the all-time-
greats, worked on non-Euclidean geometry but did not
publish his results because he thought other mathemati-
cians would ridicule him.

Having solved what we think is a nice little problem,
one which makes some contribution to an area of mathe-
matics, we now have to write the problem up and hope

2

that it will be published in some mathematical journal. For
a Pure Mathematician this usually involves the statement
of a theorem, its proof, finished off perhaps by a conjecture
or a remark as to where the new result fits in to existing
mathematical knowledge.

In this writing-up, just like a textbook, there is fre-
quently no hint of all the trouble that went into the creation
of the final work. Like a birth certificate it guarantees the
existence of an individual but shows none of the effort
(and fun) that its parents put into its.creation, nor the atten-
lions of the medical staff that helped bring it into the
world.

Why do we publish such bare-bones information in
Journals and textbooks when the really exciting part of
mathematics is the creative part? Why do we show our stu-
dents only the birth certificates? Is it embarrassment?

Once a paper has been submitted, the Journal editor
passes the paper on to one or more referees. Is the paper
correct? Have we indeed proved our result? And is the
result sufficiently interesting to publish? If our paper
passes the referees' tests, in due course it will appear in the
journal and we will be provided with reprints that we can
send to our friends to show them how clever we've been.
We can put the paper in our curriculum vitae and, if we
publish enough of sufficient quality, then we'll be pro-
moted to Senior Lecturer or even Professor. It may even
happen that our paper will spur someone else on to a gen-
eralisation or an extension and eventually solve a really
major question.

Even when you think you've got it right though, the ref-
eree may find an error. Worse still, and this happened to
me recently, even after the paper has been published,
someone reading it may find a mistake. (Now that is
embarrassing!)

Mathematics is not necessarily a game for hermits or
recluses. Although many mathematicians still do work on
their own, research papers are more and more often the
product of two or more people. I personally find that joint
research is more enjoyable and leads to fewer suicidal feel-
ings when things are going badly. Usually too, results
come more quickly because different people bring different
experiences to bear on the problem in hand. And surpris-
ingly 'talking' mathematics makes it clearer than mulling it
around in your head. So mathematics does not have to be a
game for one player.

I know very few mathematical research workers who
don't enjoy what they're doing for its own sake for the
sake of treading where no-one previously trod. As a result,
most of us spend far more than 40 hours a week on the job,
for fun.

The Seven Steps of Mathematical Research
Step 1. Find a problem
Step 2. Experiment
Step 3. Conjecture
Step 4. Proof or counterexample
Step 5. Generalise or extend
Step 6. Publish
Step 7. Go to Step 1

2. What is mathematics?
T'm never totally sure that I know the answer to that ques-
1 tion. However I will try to say not what mathematics is,
in total, but rather what I think the most important ingredi-
ents are.
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1. Objects

To me the most fundamental part of mathematics are its
objects. These are the numbers, sets, algebraic quantities,
graphs and so on, that are the basic items of study.
Anything in the real or an imagined world is potentially an

object for mathematics.
For instance, take points and lines. We think of them as

real and use them to construct plans of houses, roads, air-
craft, machines... which can be subjected to the rules of
geometry as required. However, points and lines are imagi-
nary objects in space; and that space is the one imagined by
Euclid, which approximates to the real world on many
:occasions, but not all.

2. Algorithms
The second basic ingredient of mathematics are the rules of
the particular game we are playing. These allow us to
manipulate objects, kick them around, score goals if we're
lucky. Called algorithms, they are well defined processes
which do a particular job. A good algorithm will perform a

__particular function in a finite number of steps. Algorithms
are almost always able to be converted into computer pro-
grams. All computer programs are algorithms.

The common algorithms that everyone has used in
school are multiplication and division. The multiplication
algorithm allows us to multiply two numbers. For instance,
24 x 17 is calculated as follows:

24
x 17

168
+240

408
The division algorithm, in one form, works like this:

24
17) 408

L.34
68
68
00

Although not often called an algorithm, we can think of the
process of solving a linear equation as an algorithm. We
illustrate the finite number of steps used in the example
below.

Solve 3x 6 = 0
3x = 6
x

x
=
= 2.

The algorithm implicit in these steps will solve any linear
equation.

I regard mathematical formulae as algorithms because
they give a well-defined method for solving certain prob-
lems. Hence A = irr2 is an algorithm in the sense that it
says, if you give me the radius of a circle, I will give you (in
a finite number of steps) its area.

Similarly x = b ± Vb2 4ac
2a

is an algorithm for solving the quadratic equation
ax2 + bx + c = 0.

3. Theorems and Logic

At a slightly higher level in the mathematical hierarchy we
have theorems and logic. Logic acts on theorems in much
the same way as algorithms act on objects. But, so far, it is
not as easy to programme logic to manipulate theorems as
it is to programme algorithms to manipulate objects.

Given an object .I can perform an algorithm on it. Given
a known result, it can be proved by following a sequence of
logical steps. There is nothing original here. We just follow
the train lines from one station to the next. There is nothing
unexpected; we know the algorithm will produce the right
result; we know that logic will correctly prove the next
theorem.

4. Creativity
How does creativity fit in?,Creativity prothices new dis-
coveries. It extends our list of theorems, algorithms and
logical tools. It gives us more control over the world we
live in.

Creativity produces problems which lead to conjectures.
It enables us to find counter-examples to conjectures, or
proofs for new theorems. It is creativity that leads to gener-
alisations and extensions and provides connections
between previously unrelated sections of the subject. We
know creativity when we see it, and we know what it does.
How it does it is still locked inside the brain.

In the future it may be possible to program a machine to
be creative. But this creativity will have to be more than
applying logic to one theorem to produce new theorems.
This is because most theorems produced in this way will
not be useful, nor will they be interesting. Part of the cre-
ativity of a mathematician is to be able to see what is
potentially useful and interesting and link that to the math-
ematics that is currently known.

So mathematics consists of certain planks, and tools
the objects, algorithms, theorems and logic. But mathemat-
ics also involves an imaginative side, the creative part that
enables new tools to be invented and the wood to grow
and to be of more use; that produces results that have not
been thought of before; that produces processes to be
developed, that can't be found in any textbook or mathe-
matical paper; that is the most interesting and satisfying
part of the whole subject.

3. What to teach?
1. Being Creative

We are extremely good at exploring the objects of
mathematics and at teaching any number of basic

algorithms. At university we show our students endless
theorems and often expect them to learn the proofs.

I first got fun from mathematics because I could contin-
ually get the right answer. It was not till later that I realized
that there was a completely different side to it all. It was
possible to produce something entirely new. My entirely
new results were rather like finding a dead tree in the
Opaharua Swamp. I had to (like Newton) stand on the
shoulders of giants to do it. But I was seeing things that no-
one had seen before. It didn't matter that it was no more
useful than a dead tree. It was my dead tree. And I kept
hoping that, if I kept looking, there might be a swan
behind the dead tree.

In recent years we've started to move towards more cre-
ativity in the mathematics classroom. This has been
achieved to some extent by the introduction of problem
solving. Students get a chance to take part in a search and
sometimes get the feeling of discovery and creativity.
Problem solving is the closest thing I know of at the school
level, to real mathematical research. With good problems,
students can go through all of the creative procedures: they
can conjecture, find counter-examples, find proofs, gener-
alise, extend, and even publish. In 1952, Ann Roe studied
64 eminent scientists. She found that the single most
important factor in the final decision of these people to



take up science, was the sheer joy of discovery. With prob-
lem solving we are giving children a taste of that joy.

There is a small bit of cheating involved here though: (i)
the students generally do not dream up the problems for
themselves, and (ii) the answer is already known to some-
one before the problem is posed. But it is a big step in the
right direction.

2. Facts, and Using Them
The human race is storing up more and more facts each
day. Probably they are being accumulated at an exponen-
tial rate. How can anyone even expect to learn them all?
Luckily knowing facts is not as important as being able to
use facts, and to use them in new and novel ways. It is nec-
essary for our students to learn to think deductively and
intuitively. We need to give them practice in creativity.

This is not to say that they should learn no facts. Of
course, students need to know mathematical facts. They
need to know about mathematical objects, algorithms, the-
orems, and logic. But they should also know how to gener-
ate ideas.

The reasons for this are because (i) creativity is an inte-
gral part of mathematics (and all other disciplines); (ii) we
are trying to prepare our students for a world which will
not be like today's world possibly the best training we
can give them is to be flexible, to think and to be creative.

There arclues from educationalists about how this may
be done. Joseph Renzulli in his The Enrichment Triad Model
has three types of enrichment which can lead students to
genuinely creative experiences. I'll take up his themes in
the next section, though they have already appeared
implicitly. The only problem is likely to be a need for teach-
ers to change their attitude it is almost certain that some
students will get away, will be off and running, so fast that
teachers won't be able to keep pace with them. I often have
this problem. Bright school students I've worked with and
my graduate students often leave me behind. You just have
to relax and enjoy it. Teachers should encourage their stu-
dents to try out new ideas even if it means disrupting
school timetables perhaps for them to go to a library. or
visit an expert. And of course, not just for the study of
Mathematics.

4. Renzulli was there first
Renzulli is an educator who developed his Ideas through
an interest in talented students in all areas, not just mathe-
matics. At the heart of his programme are three kinds of
enrichment activity Types I, II and III. I have adapted his
general ideas to the teaching of mathematics, and to the
teaching of all pupils, whether obviously talented, or not.

Type I
Type I enrichment activities are general exploratory activi-
ties: the teacher provides experiences that put students in
contact with topics or areas of study in which they may
develop a sincere interest. Although the emphasis is on
exploration, the students need to realise that it is purpose-
ful exploration. Eventually students will be expected to
conduct further study in one of their areas of interest.

Renzulli suggests 3 ways for students to explore:
through interest centres, field trips and resource people.
You may well be able to think of others. A mathematics
interest centre could contain a range of books containing
mathematics not met in the regular classroom, bibliogra-
phies of famous mathematicians, puzzle books, popular
books on mathematically related topics, etc., appropriate to
the level of the student. They could also contain a range of
equipment. Apart from the obvious items, maybe you
could find a theodolite, an astrolabe or some other exotic

equipment. (At my last university I was custodian of three
magnificent machines from the last century that variously
found the arclength of a curve and constructed conics.) It's
worth keeping your ear to the ground. It's amazing what
equipment universities and companies discard. It's worth
visiting antique shops too from time to time. Probably
interest centres could also include these days, a computer
and software. For example, there is some very nice fractal
and chaos software available now.

It is fairly obvious what is meant by field trips. There
_are an increasing number .of hands-on.§cience museums
springing up. These all have some mathematical items. My
university encourages school classes to visit the university
and I'm sure others do too. In Britain, I know that some air-
ports are willing to take groups of students. That may be
the case here as well. The Meteorological Office, a polling
firm, an engineering design office, a standards testing lab,
an actuary's department, a city or county council engineer-
ing branch, an economic forecasting firm etc., are all possi-
bilities. The aim is to find local places where mathematics
is actually being used in some form or other and see if
they'll let you and your students in for a good look round.

Resource people could be friendly bearded professors,
or people in government or industry. It's good for the stu-
dents to see live mathematicians. Try to cultivate one or
two that you know have a good story to tell or some good
problems for the students to try.

In summary then, the Type I activities aim to broaden
students' knowledge and experience by placing them in
situations which are different to the regular classroom rou-
tine. It is hoped that this process may give students some
particular interests that they will follow up to the Type III
level.

Type II
Type II activities are almost exclusively training exercises.
But these are definitely not content-oriented. Hence Type II
activities are meant to lead students to a mastery of the
processes which enable them to deal more effectively with
content. Learning how to use a formula or algorithm is not
a Type II activity; but learning to select the right algorithm
is. These activities include critical thinking, problem solv-
ing and brainstorming.

They should be planned so that they provide opportuni-
ties for developing thinking and feeling abilities to their
highest potential. They should also give introductions to
more advanced kinds of study and enquiry. It is hoped that
they will provide skills and abilities to solve problems in a
variety of areas and in new situations.

There are any number of mathematical problems and
projects that students can undertake, on their awn and in
groups, that will facilitate Type II processes. These activities
should highlight the processes at work, so that the pupils
will be aware of their application in other situations. When
is the Pigeon Hole Principle useful? When should counting
techniques be used? Is now the time to generalise? What
happens if we work from the other end? Is there just one
counter-example? Could the computer do this for us? Type
II activities should help students to learn the tricks of the
mathematical trade.

Type III
In Type III enrichment activities the student becomes an
actual investigator of a real problem using appropriate
methods of inquiry. At this point students actually become
mathematicians. They tackle a mathematical problem
using the techniques that a mathematician would employ.
Preferably (and this may be difficult to arrange) the prob-
lem they investigate is also a problem which they have
taken an active part in devising.
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It is very unlikely that students will be able to take com-
plete responsibility for generating a problem which inter-
ests them. My experience is that (even at the Olympiad
level) problem-producing does not come easily. However,
the teacher needs to be ready to take an idea and help the
student convert it into a viable problem.

This is not easy. After a while you develop an intuition
for what might work, but you can never be sure.
Sometimes the problems are too easy. Sometimes they are
impossibly hard, in which case you have to learn to stop
and go in another direction.

With original problems there is only one way to pro-
ceed: you have to jump in at the deep end. Therefore wise
teachers stand by with a life jacket, just in case. If the stu-
dent isn't able to swim it will be necessary to start again on
a subset of the problem in order to produce something
which will lead to a result.

Having produced the problem there may be no Qbvious
technique to solve it. This is why Type II activities exist - to
give some new techniques which might be useful.
However, intuition and guesswork may be just as impor-
tant.

Results
In a Type III activity it is important to communicate results.
This should be more than putting the work on the class-
room noticeboard. Perhaps the proof or extension could
appear in a school magazine or newspaper. (After all,
poems and stories appear there. Why not original maths?)
A friendly academic may be able to recommend some-
where else, and exceptional work might be published in,
for example, the New Zealand Mathematics Magazine or
Function.

The attempt to publish or bring the result to the notice
of an expert is important for three reasons. Firstly, it
increases the chances that the problem has been truly
solved, as experts will review it. Secondly, your solution
may lead to new proofs and extensions by other people.
Thirdly, and perhaps just as important, it gives recognition
to the work; it says, 'Student, you have done well.'

So, following the three Types of activity Renzulli sug-
gests, has led us to precisely what mathematicians do.
Mathematicians search for a problem. Then they seek for
ways to solve it. Finally they publish their result. Students
can learn mathematics in this way too. In the process they
will experience the joy of creating their own mathematics.
Hopefully this will be more interesting and lead to better
learning than the traditional algorithm learning approach
to the subject.

5. Some Examples
Here are some examples of Type II activities developed
into Type III activities. I hope you will see that, by tak-

ing almost any situation that you have been familiar with
for a long time, can be developed into a Type III activity.

Example 1

(la) Given a 3 litre jug and a 5 litre jug and a water
trough, can you measure out exactly 4 litres of
water?

This is a fairly straightforward question that even young
children can work at using trial and error. It can be devel-
oped into a project by going to the next question.

(1.2) Given a 3 litre jug and a 5 litre jug, what amounts
of water can you measure?

This question is amenable to a rigorous proof by 11- and
12-year-olds. But first the students have to do some experi-
mental work. (With pen and paper will do though it might
be more fun with water.) The experimental work can lead
to a conjecture and then the conjecture will need to be
proved or a counter-example found.

The answer here is that any whole number of litres can
be produced. The proof is to first get 1 litre. Once you have
1 litre you just keep adding 1 litre lots together and you
eventually get any whole number of litres. It's important
for students to
(a) get the idea of the proof, either through discussion in

a group, or by their own individual experimenting,
(b) write up the proof.

At this stage brainstorming should come up with a
whole host of problems related to (1.1) and (1.2). These will
vary in sophistication depending on the maturity and abil-
ity of the students. With older students you might get them
inventing the following problem (Type III activity).

(1.3) Given an x litre jug and a y litre jug, what amounts
of water can you measure accurately?

A further extension : in (1.3) x and y will probably repre-
sent whole numbers.

(1.4) What if x and y are just any positive numbers?
Students should work on whichever problem they come
up with and produce a proof which is appropriate to their
level of sophistication. For students who know the
Euclidean Algorithm it is relatively straightforward to
show that if x and y have no common factors, then all
whole numbers of litres can be obtained.

(1.5) What if x and y have a greatest common factor of z
though?

This activity can give students a chance to practice the cre-
ative side of mathematics. There is ample opportunity for
experimentation, conjecture and proof, while all the time
using known algorithms. (If an algorithm, such as the
Euclidean Algorithm is needed but not known, then the
students can be directed to a book to learn it for them-
selves, or it can be taught. This is potentially a Type II activ-
ity.) These activities can be used with small groups or a
whole class. You could put the activities (1.1) to (1.5) on
cards and let students work on one card at a time. But this
leaves no obvious chance for Type III work.

How can it motivate a Type III activity? What possible
problems come to mind as a result of this example? Of
course, it's impossible to answer that question. It might be
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that the student goes for rods, x and y units long, and asks
what lengths can be made with rods of these lengths. Who
knows what they will come up with?

Example-2-

(2.1) In the diagram the circle centre A has radius 2cm
and the circle centre B has radius 1cm. What is the
radius of circle C?

This problem can be solved by an application or two of
Pythagoras' Theorem.

While not a strong Type II activity it does require some
ingenuity to solve the problem. A common error is to
assume that there is a right angle at C. In fact no matter
what the radii of the two larger circles it can be shown that
the LACB is never 90°. One nice problem is to explore the
values of LACB.

Brainstorm. What questions arise from (2.1)?
(2.2) Suppose the largest possible circle centre D is

placed (squeezed) between the circles A and C,
and the horizontal line. What is the radius of D?

(2.3) Repeat (1.2). In other words, find the radius of the
largest circle which lies between the circles with
centres A and D, and the horizontal line. In this
way there are a whole series of circles wedged in
between the circle centre A, the horizontal line and
the last circle. Find a formula for the radii of all
these.

Students should now try to develop their own Type III
activity based on (2.1). Two possibilities are suggested
below but there are possibly infinitely many other ques-
tions that could be posed.

(2.4) Let P1 be the first circle (centre A) and P2 the sec-
ond circle (centre B). Let P1 be the largest circle con-
tained between the circles Pi_1, Pi_2 and the
horizontal line, where i 3. Find a formula for the
radius of circle Pi.

(2.5) Let P1 = Q1, P2 = Q2 and P3 = Q3, where P1, P2, P3
are as in (2.4). Let Qi for i 4 be the largest circle
contained between Q1, Q2 and Find a formula
for the radius of Q.

Example 3.

(3.1) Call a number n good, if the numbers 1, 2, 3, ...,
can be split into two groups such that the numbers
in one group have the same sum as the numbers in
the other.

(For students who know about sets, let N = 11, 2, 3, ..., nl.
We say that n is good if N can be divided into two sets A
and B such that AFB = N, AnB = 0 and the sum of the
numbers in A is equal to the sum of the numbers in B.)

This is a nice Type II exploration that has a simple solu-
tion. The proof that I know does depend on knowing the
sum of the numbers in N. However, a lot can be gained
from this problem without knowing this. Primary school
students should be able to guess the pattern even if they
can't prove that their conjecture is true.

Taking this activity on to Type III is possible, perhaps
with several children brainstorming. Perhaps they will
break N into 3 sets to see what problems arise.

Example 4.

(4.1) Now 9 = 4+5 and 9 = 2+3+4. So 9 can be written as
the sum of a consecutive string of positive integers
in two ways. Are there any numbers that cannot be
written as a consecutive string of positive integers?

Experiment. Start with 1,2,3,4,5, ... and so on. This is a clas-
sic chase. Do you see any patterns? Can you make a conjec-
ture? Can you prove the conjecture? All the good old stuff.

This problem like many others can be dealt with at a
series of levels.

(i) Primary school students can, if nothing else, get
good practice in arithmetic by looking for exam-
ples of numbers which are not the sum of a consec-
utive string.

(ii) Many of these students can make a reasonable con-
jecture.

(iii) The proof is probably difficult to expect till sec-
ondary school. I have seen bright 10- and 11-year-
olds get there with help.

(iv) What questions does this problem suggest?
Brainstorming, may bring up questions that pupils
(and teachers) can't solve. In that event, ring up a
sympathetic academic.

Clearly the Type III suggestions I've made are not Type III in
the strictest sense of the word because they are not the stu-
dent's own problems. However, students will come up with
questions that I haven't thought of. They do it all the time.
They just need encouragement and help.

Notes
DR DEREK HOLTON is Professor of Mathematics and Statistics at
the University of Otago, Box 56, Dunedin, New Zealand.

He recommends a chapter by Alan Schoenfeld as reinforcing and
extending the ideas in this set item. It is

Schoenfeld, Alan H. (1992) Learning to think Mathematically:
Problem Solving, Meta Cognition, and Sense-Making in
Mathematics, in, Grouws, Douglas (Ed) (1992) Handbook of Research
Teaching and Learning, New York: Macmillan.
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Item 7

Number Skills in Junior Classrooms

By Jenny Young-Loveridge
University of Canterbury

What number concepts and skills do children have when
they start school? How has their understanding changed

after a year? How aware are teachers of what the children know?
What number concepts and skills are taught in the first year?
These questions are important. If we underestimate what child-
ren can do their achievement will be less than it might have been.

The results of this study were very cheering teachers can,
after only about 12 days teaching a child, make very accurate
judgements about mathematical knowledge and skill. However,
there are also some clear warning results about certain ways of
using teaching programmes which do not bring about
maximum progress.

The children

1. On Entry to School

The sample consisted of 47 girls and 34 boys who had been
attending school for a month or less. The children came from
18 different primary schools in Christchurch, covering a wide
geographic area and varying socio-economic status. The child-
ren were given an interview with 14 different kinds of number
tasks, presented in the form of a game. (See Table 1.)

Table 1
Tasks Used in the Number Tasks Interview

Extra items
1 year later

1. Rote Counting up to (10) (20) (30)
2. Forwards Number Sequence give no. just

after (5) (16)
3. Backwards Number Sequencegive no. just

before (5) (9)
4. Enumeration (5 objects) (9 objects)
5. Understanding the Cardinality Rule (5 objects)

(9 objects)
6. Pattem Recognition for Small Numbers

(3) (4) (5)
7. Ordinal Numbers (first) (last) (second) (third)
8. Numerical Difference (of 1) (of 2)
9. Recognition of Numerals (2) (5) (9)
10. Formation of Sets (2) (5) (9)
11. Addition with Concrete Objects (3 + 2) (6 + 3)
12. Subtraction with Concrete Objects (5 2)

(9 3)
13. Addition with Imaginary Objects (2 + 1) (3 + 2)

(4 + 3)
14. Subtraction with Imaginary Objects (2 1)

(4 2) (5 2)

(29)

(16)

(fifth)

(14)
(14)
(9 + 5)

(13 6)

(7 + 4)

(9 4)

Many of the children performed very well on the number tasks.
Even the least able children knew something about numbers.
When their answers were scored to give a total out of 36, the
average score was just over 20. However, children varied a
great deal. At the top end of the range there was a child who
could do all the tasks, including rote counting up to 100. At the
other end was a child who could rote count up to 8, enumerate
5 blocks, and identify 'first'. Two other children who were slightly
more successful overall, did not appear to be able to rote count
at all. Table 2 is a summary of the tasks on which children were
most and least successful.

Table 2
Tasks on which Children were Most and Least Successful on

entry to School

Number of
children %

Most Successful
Identifying the ordinal position

first 79 98

Formation of a set of 2 76 94

Identifying a numerical difference
of 1 70 86

Enumeration of 5 objects 69 85

Application of the cardinality
rule to a row of 5 objects 62 77

Least Successful
Rote counting up to 30 8 10

Subtraction with imaginary
objects of 2 from 5 18 22

Addition with imaginary
objects of 4 and 3 21 26

Subtraction with imaginary
objects of 2 from 4 24 30

Giving the number just after 16 25 31

Average across all tasks 45 56

2. After One Year at School

Approximately one year later, the children were interviewed
again, using the same 14 different number tasks as before, plus
a more difficult item for each of nine tasks.

The children's number concepts had advanced substantially.
Several tasks were done correctly by all the children. The aver-
age score out of 45 was almost 36, the same as the full score
at the beginning of the year. Individual children ranged from 15
to 45.
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When the data was analysed it was found that the children
who entered school with relatively little knowledge about num-

_ bers made greater learning gains than did their more knowledge-
able peers. This pattern contrasts markedly with those of other
studies, for example, that by Fogelman in 1983. These other
studies show a 'snowballing' effect with more able students get-
ting further and further ahead of their less able peers. Further
analyses were done to find out why our children were different.
The reason appeared to be that the school mathematics prog-
ramme they were getting was well matched to the existing skills
of the less knowledgeable, but was not well matched to the skills
of the children who already knew a lot about numbers.

Once again, children's performance varied a great deal. Table
3 is a summary.

Table 3
Tasks on which Children were Most and Least Successful after

a Year at School

Number of
children

Percent

Most Successful
Enumeration of 5 objects 80 (100)
Recognition of the numeral 2 80 (100)

Formation of a set of 2 80 (100)
Rote counting up to 10 79 (99)

Pattern Recognition of 3 79 (99)

Identifying the ordinal position
first 79 (99)

Identifying a numerical
difference of 1 79 (99)

Least Successful
Subtraction with imaginary

objects of 4 from 9 18 (25)
Identification of the ordinal

position fifth 24 (30)
Giving the number just after 29 32 (40)

Giving the number just before 16 33 (41)

Addition with imaginary objects
of 7 and 4 33 (41)

Average across all tasks 63 (79)

The teachers

1. At the New-Entrant Level

The eighteen teachers were asked, with a questionnaire, which
children could do each of the tasks. The questions were framed
as if the teacher was interviewing the child, and the wording was
the same as what was actually used in the interview with the
children that avoided any misunderstanding about terminology.
Teachers were asked not to do the tasks with the children, but
instead to think about how well the children could do on the
tasks. Teachers' answers were compared with what the children
could actually do, and then the numbers of overestimates and
underestimates were calculated.

Teachers' judgements were remarkably accurate overall that
was even although the children had been at school only about
12 days, on average. These accuracy levels compare very
favourably with those found in previous studies. Morine-Der-
shimer looked at teachers' expectations of pupil's success in
reading and found that teachers tend to err on the side of being
overly optimistic. However, my study found that teachers tended
to err on the pessimistic side, with underestimates exceeding
overestimates considerably. It may be that teachers are pes-
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simistic about children's performance in mathematics because
they themselves have a negative attitude towards mathematics.
Comments made by teachers during my visits to schools did
reflect a lack of confidence about mathematics.

Like other research, this study found that teachers tended to
underestimate the mathematical knowledge of the high scorers
more than that of low or middle scorers. The reason for this
Ltendency may be that it is difficult to recognise tasks which are
too easy when the children appear to be working cheerfully and
industriously, even with tasks which hold no challenge for them.
Table 4 is a summary table showing tasks on which children
were judged most accurately and least accurately by their
teachers.

Table 4
Tasks on which Children were Judged Most and Least Accurately

by their Teachers

Percentages of Children

Over-
estimates

Under-
estimates

Total
mismatch

Most Accurate
Formation of a set

of 2 4 0

Identifying the ordinal
position of first 3 4 7

Rote counting up to 30 12 3 15

Enumeration of 5 objects 7 9 16

Giving the number just
after 16 1 16 17

Least Accurate
Identifying a numerical

difference of 2 8 50 58

Subtraction with imaginary
objects of 1 from 2 12 46 58

Subtraction with concrete
objects of 2 from 5 11 38 49

Addition with imaginary
objects of 3 and 2 1 45 46

Addition with concrete
objects of 3 and 2 16 28 44

Average across all tasks 11 19 30

2. At the End of the Junior One (J1) Level
Approximately one year later the teachers were asked whether
or not they had taught the children any of the mathematical
concepts and skills in the list. The questions were again framed
as if the teacher was interviewing the child and the wording was
the same as in the interview. Four different 'learning' outcomes
were revealed: already known, learned, forgotten, and not learn-
ed. These were further subdivided according to whether or not
the teacher said the skill had been taught to the child during the
year.

A substantial number of children had been taught by their
teachers skills they already had when they started school. For
example, 85% of children were taught how to count 5 objects,
how to identify 'first', and how to form a set of 2 objects, even
though they already understood these concepts when they en-
tered school. On the other hand, a considerable number already
knew how to do simple operations, and were not taught (or
re-taught) these skills during the first year of school. For example,
over half of the sample (53%) could subtract 2 from 5 with
concrete objects, and almost as many (48%) could subtract 1
from 2 mentally. Table 5 is a summary of these mismatches.
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Table 5
ConceptsAlready Known by Most Children: Taught

and Not Taught

Already Known
(percentages of

children)

Taught
Enumeration of 5 objects
Identification of the ordinal position first
Formation of a set of 2
Identifying a numerical difference of 1
Rote counting up to 10

85
85
85
81

74

Average across all tasks 41

Not Taught
Subtraction with concrete objects of

2 from 3
Subtraction with imaginary objects of

1 from 2
Subtraction with concrete objects of

3 from 9
Addition with imaginary objects of

2 and 1
Addition with imaginary objects of

3 and 2

Average across all tasks

53

48

34

28

26

12

Forty percent of the children were taught, and learned, to
recognise a pattern of 5 objects and to identify the numeral 2.
Thirty-nine percent were taught, and learned what number
comes just before 5 and how to count 9 objects. However, a
similar number learned skills even although they had not been
deliberately taught them. For example, 40% of children learned
what number comes just after 16, the subtraction of 3 from 9
with concrete objects, as well as the subtraction of 2 from 5 with
imaginary objects. Table 6 is a summary.

By putting Table 5 and Table 6 together I worked out that
children were being given twice as many opportunities to practice

Table 6
Concepts Learned by Most Children: Taught and Not Taught

Leamed
(percentages of

children)

Taught
Pattern Recognition of 5 40
Numeral Recognition of 2 40
Giving the number just before 5 39
Enumeration of 9 objects 39
Formation of a set of 9 38

Average across all tasks 21

Not Taught
Giving the number just after 16 40
Subtraction of 3 from 9 with concrete objects 40
Subtraction of 2 from 5 with imaginary objects 40
Subtraction of 2 from 4 with imaginary objects 39
Rote counting up to 30 34

Average across all tasks 12

3

existing skills as they were to learn new ones. In general, the
more new skills taught the quicker the pace through the cur-
riculum, but it is impossible to determine an ideal ratio of practice
to new skills taught because the needs of individual children
have to be taken into account. However, the children with higher
abilities have their achievement levels most noticeably reduced
by an unnecessarily slow pace through instructional materials.

_ -

Implications

The results of the present study have some important implica-
tions for Mathematics schemes and curricula in junior class-

es. For example, in New Zealand a new resource, the Beginning
School Mathematics programme (BSM) is being introduced. Be-
cause BSM is a language-based activity programme which fol-
lows the theoretical principles of Jean Piaget, there is a lot of
emphasis placed initially on sorting, matching, comparing, order-
ing, and classifying, and relatively little work in the area of number
per se. A deliberate decision was made not to introduce the
study of numbers until almost halfway through the programme
(Cycle 4 out of the 8 cycles), to spread this over a year instead
of a term, and not to go above the number nine.

Many of the concepts which a substantial proportion of the
children in the present study knew on entry to school, (and even
more knew after a year at school), are first referred to in BSM
more than halfway through the programme. The most notable
examples are enumeration to 9, and the joining and separating
of sets. None of these are referred to in the programme before
Cycle 6 of the 8 cycles to be covered in the first two years of
school. At least half of Christchurch children were able to do
these tasks before they started school.

The findings of the study have particularly serious implications
if a lock-step approach to teaching mathematics is taken, with
all children starting at the beginning of a programme (regardless
of what they already know), and being taken through every ac-
tivity, whether or not it is appropriate for them. If BSM is used
this way the children would be most unlikely to reach the later
cycles much before the end of the first year at school, if not the
second year, and this has been clearly demonstrated in trial
schools. As a consequence, the children would not be challenged
from the word `go' with activities which build on their existing
knowledge: it is likely that they will lose interest in mathematics
altogether. At the very least, their progress would be halted for
a while, until more demanding activities are provided when the
later units are finally reached.

Although it is intended that teachers use the BSM programme
flexibly, starting individual children at points in the programme
where there is room for learning new concepts and moving them
thorugh it at a pace which is appropriate for their individual rates
of learning, overseas research suggests that this may not actually
happen in practice. For example, Bennett and his colleagues in
1984 found that teachers (who had been selected as 'good'
teachers) stayed very close to the sequence of mathematics
avtivities laid down for them. Particular activities were chosen
because the teacher had reached the place in the programme
where those activities are usually used, rather than because
they were suitable for developing children's current skills a little
further. Other researchers have observed that teachers tend to
choose activities which maintain the flow of activity rather than
those which are appropriate for moving students from their cur-
rent level of skills towards objectives. If we are to use the BSM
or other detailed step by step programmes flexibly (as is usually
intended by the curriculum developers) we could do with the
help of specific directions to this effect and concrete assistance.

Looking Back
The good news is that overall, teachers make quite accurate
judgements about what children know, and can do so after a



relatively brief period of acquaintance. They are well trained
professionats: They clearly have the necessary skills for making
decisions about which activities are appropriate to build on the
existing skills of their pupils. (As a researcher I suspect that
accuracy levels could have been even higher if some form of
systematic assessment, e.g., checklists, had been used in addi-
tion to informal observations.)

The not so good news is that all of us may need to be reminded
about the importance of using those skills of judging our students'
current knowledge when we plan instruction. We need to choose
learning activities which move our students from where they are
now to where we want them to be. Otherwise many may waste
precious time doing 'busy' work while they cover material with
which they are already familiar. Current models of learning regard

the amount of time spent actively engaged in classroom tasks
as central to learning. Time on task seems to account for variation
in school learning, not only among students and among classes,
but also among nations. The long-term consequence of giving
children number activities which are not challenging enough to
provide opportunities for learning new skills, and instead, allow-
ing them to spend a lot of time on skills over which they already-
have complete mastery, is that the total time available for
mathematics learning' over children's school years will be re-
duced. In the end, children's achievement will be less than it
might have been.

We, as professionals, need to pay attention to both diagnosis
and treatment.
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Item 8

SMALL CHILDREN SOLVE
BIG PROBLEMS

Lyn English
Queensland University of Technology
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Figure 1.

Try your hand at this problem.

Use the _clues to find the special block.

Clues:
The block is not thick.
It is not a triangle.
It is not large.

What method did you use to arrive at your answer?

THIS PROBLEM was given to 52 5-year-olds, in a
quiet room of their school. The blocks were there
and the clues spoken. Forty-six identified the right
block and with very little delay; once the last clue

had been given, the children pointed immediately to the
correct block.

When we analyse the logical thinking required, we
realise just how cognitively adept young children are when
they commence their school lives. Yet research has tended
to highlight what young children can not do. The result
is that children's competence as thinkers and problem sol-
vers has been underestimated. By highlighting the cogni-
tive talents of young children we can see how to enrich
children's problem-solving experiences.

Past Limitations
he theories of Jean Piaget have been the most influen-
tial l on our thinking about children's thinking. How-

ever, they portray young children as limited in their ability
to reason logically or inferentially or to think intelligently
in general. If you set out to teach only the range of educa-
tional experiences which fit Piaget's stages of cognitive
development you will restrict your teaching. Piaget's exper-
iments were based on sophisticated scientific phenomena
and were frequently accompanied by abstract instructions
and unfamiliar apparatus. Consequently, children's poor
performance on many Piagetian tasks could have been
due largely to their failure to understand the instructions
and to the meaningless nature of the task materials. In
the 'colouring liquids' experiment, for example, children
were presented with containers of different chemical sub-
stances which they were to mix in all possible ways. The
chemical reactions of the substances produced varying
colours which served to identify the combinations formed.
Another experiment required the child to predict the con-
ditions under which a rod would bend sufficiently to en-
able one end to touch the water in a basin. Weights and
clamps were attached to the rods which varied in thick-
ness, cross-sectional form, and substance. These variables
had to be considered one at a time when determining the
conditions under which the rod would bend. This meant
that all the other variables had to be held constant. In
other words, the child had to imagine all the possible
combinations involving these variables. Given the sophis-
ticated structure of these two tasks, it is not surprising
that it was not till adolescence that children could do these
tasks, that is, at Piaget's stage called 'formal operations'.

Young children can solve seriation
problems

While acknowledging Piaget's outstanding contribu-
tion to child psychology, modern research is yielding

a more positive and realistic account of the young child's
cognitive abilities. For example, DeLoache, Sugarman,
and Brown explored very young children's strategies in
assembling a set of five nested cups. The cups were chosen
because of their appeal to young children and because
mistakes were immediately obvious to the children a
feedback feature. Children as young as 18 months ar-
ranged the cups with enthusiasm. They knew immediately
when they had made a mistake and hence, were able to
correct their errors. An analysis of the ways the children
managed the corrections revealed increasing flexibility and
broadening of thought and action with age, trends which
otherwise might not have been detected.

Young children can reason deductively
It was once thought that only older children could man-
age to draw logical conclusions. However, six-year-olds

have this ability. Within the context of a make-believe
world, Dias and Harris presented young children with
syllogisms whose premises ran counter to their practical
knowledge, for example:

All cats bark.
Rex is a cat.
Does Rex bark? Why/why not?

It was found that the use of fantasy cut down the atten-
tion they gave to their practical world knowledge, enabling
them to accept the premises as a basis for reasoning. Given
a task with appropriate content, young children can reason
deductively. I confirmed this in a similar project. I gave
beginning school children syllogistic problems with fan-
tasy creatures. One piece of reasoning was

Wobbles wear furry pyjamas to bed.
Animals that wear furry pyjamas love to eat grubs.
Morilla is a Wobble.
Does Morilla eat grubs? Why/why not?

This was presented in two different ways. In one set of
problems, children played with a stuffed animal called
'Morilla'. In the other set of problems, children were asked
to pretend that they were the creature. For example, 'Let's
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pretend that you are a Wobble. Do you eat grubs?' In this
instance, one would expect the children to say, 'No! I don't
eat grubs'. However, many of the children not only drew
logically correct conclusions, but also gave 'theoretical'
reasons whyr'Yes, Morilla eats grubs because she wears
furry pyjamas', or 'Yes, I eat grubs because I'm a Wobble
and I wear furry pyjamas.' In other words, the children
did not guess; they were able to ignore practical consider-
ations and use deductive reasoning to draw conclusions.
An interesting finding here was that children who adopted
the creature role outperformed those for whom a toy was
provided. But maybe the doll's pyjamas were not furry
enough!

Young children can solve problems
of combination

easoning in a logical manner is also evident when
ANchildren systematically form all possible combinations
of two items. The name for the mathematical study of the
selection and arrangement of items in a finite set is corn-
binatorics. An interesting research project looked into how
well young children can handle such problems. The prob-
lems they were given did not have 'ready-made' solution
procedures and hence, the children had to use their exist-
ing knowledge structures and thinking processes to solve
the problems. The study was in three parts involving 115
children aged from 4.6 years to 9.10 years. Here is one of
the investigations in which 50 children took part.

Each child was presented with a series of seven problem-
solving tasks involving dressing toy bears in all possible
combinations of tops and pants of various colours. Two
of the tasks used items of the same colour but with varying
numbers of buttons. The number of possible combinations
ranged from five to nine.

Figure 2

b_blue
p_pink
yyel low

The children were videotaped and their problem-solving
tactics later analysed. They all possessed a repertoire of
problem-solving strategies which they almost all could
apply effectively. All of the children commenced with trial-
and-error; they did not employ any systematic method in
selecting the clothing items but simply chose the tops and
pants in a random fashion. This is a relatively inefficient
way of solving such a problem yet 25 of the 50 children
managed to get all the possible different outfits in the first
task. The major reason for their success was their effective
use of checking strategies. They employed a number of
scanning actions to monitor their progress. Through care-
ful scanning, the children were able to detect and correct
any errors in the mix of items they had selected.

As the children got further through the set of similar
tasks, 28 of the 50 children adopted more sophisticated

solution strategies. They moved away from trial-and-error
towards systematic solution procedures involving a pat-
tern in item selection (e.g. blue top, green top; blue top, green
top...). They refined their pattern until they had adopted
an efficient 'odometer strategy', so named because of its
resemblance to the functioning of a car's odometer (milage
counter). This strategy involved taking one item of clothing
(e.g. a yellow top) and systematically matching it with
each of the items of the other type until all possible com-
binations with that item had been formed (e.g. yellow top/
pirik pants; yellow top7blue 'pants; yellow top/red pants).
This procedure was repeated until all possible combina-
tions of tops and pants had been formed, as shown in
Figure 3.

Figure 3
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While the problem (dressing dolls) was meaningful to
young children, the mathematical domain underlying the
task was new to them. Hence the children's initial attempts
showed little knowledge of combinatorics, but considera-
ble knowledge of informal problem-solving procedures.
But once they had finished the tasks, many children dis-
played an implicit knowledge of combinatorial principles.
Some could even make the principles explicit by explaining
the 'best' way of solving the problem. Associated with
this was a significant improvement in their ability to tackle
non-routine problems outside the combinatorics field,
with many children independently acquiring expert-like
problem-solving strategies. In essence, these children
were able to assume control of their own learning.

Conclusions
rr he findings of the studies have significant implications
1 for the education of young school children. Tradition-

ally, mathematical problem-solving in the early school
years has focused on routine word problems involving
arithmetic computations. Because problems of this type
are usually 'predictable' in that they can be solved through
the application of one of the four arithmetic operations,
they rarely provide children with the opportunity to en-
gage in diverse thinking processes. Problem-solving in the
early school should encompass more than the application
of previously learnt rules or procedures. Children need
to engage in a wide range of problem-solving experiences
(some of which have as many solutions as there are chil-
dren in the class) and should be encouraged to think and
talk about their means of solution. Schools should
capitalise on young children's intellectual talents so that
their thinking can be extended and enriched.

e v.
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Item 9 There Are Numbers Behind
the Piano

Children's Construction of Meaning in Mathematics

By Ken C. Carr
School of Education
University of Waikato

Introduction

The study of children's mathematical behaviour goes
back many years. Piaget in the 1930s used clinical inter-
views to unearth children's ideas about number. Earlier
than this, Brueckner had used tests that measured ability
in computation and solving verbal problems, and tests
that sampled various combinations of a particular skill
(such as the addition of fractions).

In a short time the picture emerged that mathematics
was an extremely difficult subject for many children to
master. Some people, however, claimed that it was
mathematics education that was failing.

To investigate the problems, large scale surveys, such
as the National Assessment of Educational Progress
(NAEP) in the United States of America, have been used.
The latest NAEP assessments sampled 45,000 students.
In Britain the Concepts in Secondary Mathematics and
Science (CSMS) research programme assessed 10,000 stu-
dents. Likewise, the International Association for the
Evaluation of Educational Achievement (IEA) survey in
mathematics used in New Zealand a sample of 5177 for
the 'core test' as part of a study of secondary school
mathematics in 23 countries.

At the other end of the continuum researchers have
probed the mathematical ideas of individual children
through interviews, in an attempt to uncover underlying
cognitive processes. These studies usually focus on one
specific topic within mathematics, and provide inform-
ation on the learner's view of the processes involve&

Still other research adopts both techniques. Brown in
1981 used data from the CSMS survey and expanded

1

upon this with interviews. Brown's study revealed that
students in the 11 to 16 age group had considerable gaps
in their knowledge in place value and decimal fractions.
Brown and Van Lehn investigated the errors, or 'bugs',
that students generated when confronted with multi-
digit subtraction. Van Lehn listed 77 'bugs' (systematic
errors) that students made!

Along with research into children's errors in mathema-
tics, have come some studies that emphasise more posi-
tive aspects. Moser and Carpenter in 1982, and Gelman
and Gallistel in 1983 noted how capable young children
are in counting and solving verbal problems. Earlier,
Donaldson and her co-workers found that children could
conserve number younger than expected, and could
understand the relationship between class and sub-class
(in a set of objects). Other research revealed that, given
alternative approaches, previously mathematically
incompetent adults could make appreciable progress in
computational skills and understanding.

The Evidence

In an analysis of particular items in the NAEP survey it
was found that over half of the 13-year-olds could not cal-
culate the area of a rectangle from its dimensions. Al-
though most could identify common geometric shapes,
fewer than 10% could use the knowledge that the sum of
the anglespf a triangle is 180 degrees to find the measure
of the third angle. In other words relatively few students

onstrated knowledge of the basic properties of geo-
'c shapes.
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Problems were found to be just as frequent by the Brit-
ish CSMS study. In summarizing the results, Hart con-
cluded that:

The overwhelming impression obtained is that Mathe-
matics is a very difficult subject for most children.
And we have shown that understanding improves
only slightly as the child gets older.
And in the secondary school we tend to believe that
the child has a fund of knowledge on which we can
build the abstract structure of mathematics. The child
may have an amount of knowledge but it is seldom as
great as we expected.

Cockcroft in 1982 worked with 107 adults, as described in
his report. He said,

The extent to which the need to undertake even an
apparently simple and straightforward piece of mathe-
matics could induce feelings of anxiety, helplessness,
fear and even guilt in some of those interviewed was,
perhaps, the most striking feature of the study.

The recent lEA survey in New Zealand showed surpri-
sing weaknesses by third formers (13-year-olds). For
example, only half of the children said 20% = 1/5, the
most common error was 5% = 1/5. Fewer than half the 13-
year -olds could successfully answer items on common
fractions, decimal fractions, estimation of area, assigning
points to a number line, and basic algebraic computation.

Some of the most revealing student misconceptions in
mathematics have been unearthed by Stanley Erlwanger.
One of the most frequently quoted examples comes from
his conversation with Benny, an above-average 12-year-
old. Benny's teacher, in fact, regarded him as one of her
best pupils in mathematics. Benny's procedure for the
addition of decimal fractions was as follows:- (E = Erl-
wanger; B = Benny)

E: Like, what would you get if you add point 3 and
point 4?

B: That would be... oh seven... Point 07.
E: How did you decide where to put the point?
B: Because there's two points; at the front of the 4 and

the front of the 3. So you have to have two numbers
after the decimal, because... you know... two deci-
mals. Now like if I had point 44, point 44 [i.e., .44 +
.44], I have to have four numbers after the decimal
[i.e., .0088].

In further exploring Benny's ideas and beliefs about
mathematics, Erlwanger discovered that Benny consi-
dered that mathematics consisted of different rules for
different types of problems. Benny's purpose in learning
mathematics seemed to be to discover rules and use these
to solve problems. There was only one rule for each type
of problem, according to Benny.

During 1982 I studied the progress of eight 12-year-old
students who were academically representative of their
school class. The class was embarking upon four weeks of
work on decimal numbers and decimal fractions and I
interviewed the students before and after the work using
a series of nine stimulus cards. These cards covered esti-
mation, division with a divisor greater than the dividend,
writing decimal numbers, problem solving involving
decimal numbers, comparing numbers containing
decimal fractions, and naming the place value columns in

decimal numbers. These topics matched the instructional
objectives for the teaching module. Individual interviews
were audio-taped and the tapes transcribed.

Table 1 presents the results. The students are arranged
in order of academic achievement - highest being 'Jo'.

Table 1
Response Movement on Stimulus Cards - Before and

after Instruction.

Correct- Correct-to Incorrect- Incorrect-
Subject: remaining- -incorrect remaining- to-correct

correct (Change) incorrect (Change)

Tim 0 0 9 0

Mary 1 0 8 0

Bob 2 0 5 2

Sarah 4 0 4 1

Bevan 4 0 2 3

Sue 6 2 1 0

Oliver 4 2 1 2

Jo 7 1 0 1

- -
I 28 5 30 7

Despite four weeks' work the 'Incorrect-remaining-
incorrect' category is as common as the 'Correct-remain-
ing-correct' class. In other words there was little change.
However, worse still, there are 5 examples of Correct-to-
incorrect. And these are among the more able students
Sue, Oliver and Jo.

In attempting to explain the (apparent?) regression,
Erlanger and Benny come to mind. Benny often con-
structed his own (unintended) meaning from the mathe-
matics programme.

Because of the small sample in my study, it would be
unwise to generalize from these results. As well, the tea-
cher could be important, although from my observations
the particular module of work was carefully planned and
well taught by an able teacher. In spite of these limita-
tions, the results do provide additional evidence that for
many students slow progress in mathematics is the
norm.

Lest we become too pessimistic, research evidence has
also pointed out that children are surprisingly competent
in mathematics. In particular, young children have more
knowledge of the principles of number and counting
operations than was previously supposed. For example,
children as young as two and a half used the cardinal
principle:

For the child as young as two and a half years, enu-
meration already involves the realization that the last
numeral in a set (at least in a small set) represents the
cardinal number of the set.

Ninety percent of six-year-olds can solve addition
verbal problems. About half of them use advanced coun-
ting-on procedures, that is, they enter the sequence at a
place corresponding to one addend, then count forward
as many words as indicated by the second addend in
order to reach the answer.
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The inventive powers of children in mathematics have
been well documented, a good book being Understanding
Mathematics by R.B. Davis, published in 1984. Teachers
sometimes report to their colleagues the intuitive dis-
coveries a child in their class makes. Alan Hall reported
one 10-year-old's realization that negative integers could
be recorded symbolically this particular child realized
there should be numerals on the number line 'behind the
piano', the piano at the front of the classroom was obscur-
ing that part of the number line to the left of zero.

Children attempt to construct some meaning from
whatever they confront in mathematics. Sometimes this
is the meaning that the teachers intend. At other times
the children's active construction produces new errors,
or stabilizes existing misconceptions.

A question researchers have asked is what meanings
children construct from statements in mathematics that
do not make sense? Do children attempt to answer
bizarre questions? Children do attempt to answer bizarre
questions about the world, for example, 'Is Red wider

-- than Yellow?', but is this applied to questions in mathe-
matics?

With the assistance of colleagues, I made up five
bizarre questions, set out in Table 2.

Table 2
Bizarre Questions in Mathematics.

1. We are measuring using paces, or strides. It is 50
paces around a truck.
How heavy would the load be on this truck?

2. It takes a person a day and a half to dig a hole
and a half.
How long will it take two people?

3. There are ten people. Each has five apples.
Who ate them all first?

4. Some children sat a test. The top mark was 55.
The bottom mark was 5.
How many people sat the test?

5. It takes me ten minutes to bike five kilometers.
How long will it take me to ride up a very steep
hill?

The questions were written on cards. Eight academic-
ally representative eight-year-olds and eight ten-year-
olds were interviewed. Seventy-eight out of a possible 80
answers were generated by the children only one child
claimed that answers were impossible, and for two ques-
tions only.

The responses given to the bizarre questions indicated
that the children attempt to make sense of what is pre-
sented to them. Often they draw on their own expe-
riences:

To question 1 (Truck's load?)
Julie (10):... about over a tonne... it seems that a truck
could take that much 'cause it's built for that kind of
thing.
Bill (10):... about 80 pounds... I just guessed it. A truck
down River Road, it's a big Kenworth, and it worked
for a meat company.

To question 5 (Ride up steep hill?)
John (8):... about 1/4 of an hour, or twenty minutes...
well if it takes you ten minutes to ride five kilometres,
then up a steep hill you'll be going slower... But down
will be a lot faster.
Jason (10):... depends on what sort of bike... a 10-
speed can zoom up a hill. Two minutes on a 10-speed.
On a different kind of bike a bit longer. When I had my
Cruiser it used to take me ages to climb hills.

With questions where there appeared to be the possib-
ility of manipulating numbers, then children did so:

To question 2 (Time to dig hole and a half?)
Mike (8):... um... I wonder how big the hole is
though?... 12 hours, half a day... if it takes one man to
dig a hole, then two men 1/2 of 24... I reckon a day or 1/2
a day.

Rebecca (10):... 3 days... I added 11/2 and 11/2
together... I know 1/2 and 1/2 equals one, and one and
one equals two. You add two and one.

To question 4 (How many sat test?)
Sue (8):... 11... fives into 55... five times 11 is 55...
'cause the top mark was 55, the bottom was 5.
Bruce (10):... About 15... well, usually most differences
between people is about two or three percent, but usu-
ally it's greater than that, so about 15 sat the test.

In short, the children attempted to make sense of the
situation in which they found themselves. This, of
course, is exactly what they do each day in the mathe-
matics lesson for many students in our schooling
system a considerable proportion of questions in mathe-
matics must appear bizarre.

What, then, are the implications for teachers? How can
we assist to construct appropriate meanings in mathe-
matics?

Implications for Teachers

1. Children will not passively absorb what is presented
to them. Children do not always learn that which the
teacher intends. Keep this at the front of your mind
while teaching. Explain concepts in different ways;
build in regular maintenance; have realistic expecta-
tions for children; listen to children's explanations and
questions.

2. We should assist children to take a greater responsi-
bility for their learning. Children will attempt to make
sense of even the most bizarre situations in mathe-
matics when an adult is in charge. If children can be
encouraged to become less dependent upon the
teacher, then the knowledge becomes part of them-
selves. (This may be a difficult and different re-orienta-
tion for adults.)

3. Research shows that children can progress well in
mathematics given the right environment. Such an
environment includes: techniques that build upon
existing knowledge, that involve the use of concrete
materials (where needed), that promote discussion,
that encourage children to ask questions, and interact
with the teacher, and that reinforce important mathe-
matical ideas (rather than polysyllabic labels).
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4. We need to think critically about the materials we use.
For example, the Form One (11-year-olds) textbook
makes the following suggestion for slower children
who need extra work on decimal fractions:
Remedial:
Those students who have difficulty with these pages
may be asked to complete a pattern of multiplications
in which the decimal point has different locations.
26 x 483 2.6 x 483 .26 x 483
26 x 48.3 2.6 x 48.3 .26 x 48.3
26 x 4.33 2.6 x 4.83 .26 x 4.83

Would the assigning of extra pencil-and-paper exer-
cises such as these be of benefit to children struggling
to cope with ideas behind operations on decimal
fractions?

Likewise, care must be taken when using apparatus
and visual displays (such as number line models).
Children may view the particular teaching aid in quite
a different way from the teacher.

5. It is unwise to rely too heavily upon the spiral curri-
culum approach; do not put too much faith in the
notion that if children don't master ideas and pro-
cesses one year, they will pick up that knowledge the
next. For many children the spiral curriculum has
become two-dimensional, never rising above one
level. As teachers we should aim for mastery of con-
cepts and processes, realizing that for most children
progress is gradual and slow. If children miss some
key mathematical idea one year they may never gain
that knowledge; when the idea is next confronted it is
usually at a more abstract level, and even less attain-
able!
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Mathematics is supposed to be one area of school
knowledge that has right answers. Right?

Arithmetic is when the answer is right, and you look
out of the window and the sky is blue.

And when the answer is wrong and you have to start
all over again.

The mystery to many learners is knowing when the
answer is right, and why that answer is right when

they can see that a quite different answer should be
right.

Competent adults look at the mathematics that pri-
mary school children are asked to do, and have no
difficulty in telling a right answer from a wrong one,
or even describing why it is right. Adults start from
their understanding of mathematical foundations. It
seems natural to teach mathematics by starting from
simple concepts familiar to the learner and then build-
ing more complex ideas through a sequence of activi-
ties which grow in complexity. But David Tell from the
University of Warwick points out that this ignores
basic facts about the way in which children construct
their own knowledge of mathematics. They do not
start from mathematically basic concepts. They are
operating in a complex environment and trying to
understand, predict, and control the numerical con-
cepts that they need in that environment.

It is generally accepted that children construct their
own concepts in mathematics. The Beginning School
Mathematics programme in New Zealand encourages
a great deal of exploration of quantity and relation-
ships. The introduction to another syllabus speaks of
mathematics as a human endeavour which involves
imagination, discovery, perceiving relationships, inter-
preting and communicating ideas and concepts. Many
of the achievement aims and objectives in the syllabus
start with the words develop, find, devise. Teaching is
an essential part of this but the young people do their
own construction of knowledge as a result of many
factors which include exploring, listening to teachers,
arguing with classmates and copying older siblings.
And young people everywhere develop their own mis-
conceptions or 'bugs' as they do so.

These 'bugs' are almost always right in one sense
and wrong in another sense. For example, the child
who puts down

27
+ 36

513

is accurately recording that 6 + 7 = 13 and that the
two figures in the lOs column = 50, which we record
as 5. What the child has not taken into account is that
the answer as written is conventionally read as five
hundred and thirteen rather than 5 and 13. So the
child is both right and wrong.

This is just one example in which accurate concepts
that a child has developed in one context produce a
wrong answer in another - in this case in the eyes of
an adult who does not see the child's thinking. A dif-
ficulty with school mathematics is that learners have

2

to readjust their hard-learned concepts not once, but
frequently. These points of readjustment have been
called impasses, and for some children they become
just that. An impasse is a point where a concept which
is firmly believed (because it works in contexts which
the learner has experienced) is found to be untrue in
a different context.

Every time learners are required to realize that ex-
isting concepts are inadequate, or_partly right and
partly wrong, there is a possibility that they will find
the new information or procedure too difficult to un-
derstand. They may give up trying to understand and
just learn the rule for a new procedure. They may
blame themselves as being inadequate or blame math-
ematics as being too hard. They may blame their
teacher.

Three impasses will be discussed here. One usu-
ally occurs at age 6 or 7 and is about the order of writ-
ten numerals and operations. The next concerns deci-
mal fractions and is a common problem in the upper
primary school years. And the last concerns operations
with negative numbers, often met early in high school.
They are by no means the only impasses, and for some
children they are learned so easily that they are not
impasses at all.

Directional Order in Written Numerals and
Operations

efore children begin writing down their numerical
',experiences it makes no difference where the
things that they are counting are. Beans, trucks, coins
and counters can be counted in any order and still give
the same sum. Toes and fingers can be counted from
left to right or from right to left, without changing the
number of toes or fingers a child has. Children going
on a trip from an Early Childhood Centre can be
counted in any order - as long as the same child isn't
counted twice, and there should always be the same
number of children. Similarly, when two sets are being
joined, the set on the left may be moved to join the set
on the right or vice versa without changing the quan-
tity. When a small group is taken away from a larger
group the direction in which they are taken doesn't
matter.

The first operation that children write (or use
number cards to record) is usually addition of single
digits which total less than 10, and again order doesn't
make too much difference. Children who are being
encouraged to be flexible in their recording may spe-
cifically discover that the following statements all say
the same thing:

3 + 5 = 8 8 =5 + 3
5 + 3 = 8 8 = 3 + 5

A learner might decide that the only rule is that a sign
has to come between two numbers, or that the big
number has to be on one side of the equal sign and
the two smaller numbers have to be on the other side.
Children appear to learn very easily that the order of
the addends is irrelevant, possibly because, in their
non-writing world, spacial order is irrelevant. The
very point of the exercise of writing this equation in
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different ways is that it can be written in both direc-
tions and still be true. If it can be written in both di-
rections, it would be reasonable for the learner to think
that it could_also be read in both directions.

Then, suddenly, order does become important. It is
of absolute importance in the way in which we write
two-digit numerals. We write the numeral in the 10's
column to the left of (and before) we write the number
in the one's column. There is no reason for this other
than convention. On a recent occasion I saw a J2 (Year
1) child who had written a page of sums that went:

10 + 1 = 11

11 + 1 = 21
12 + 1 = 31
13 + 1 = 41

and so on down to 18 + 1 = 91

Another child looked at her page and said 'Yes that's
right, but that's not the way you spell them'. This
seems a very good way of saying that the child was
both right and wrong. And it did not diminish the first
child's pride in her work.

A more difficult case is learning that the order of
digits in subtraction does make a difference (even
though the order in addition does not). Thus 7 - 2 =
5, but 2 - 7 does not equal 5. The child who treats or-
der as irrelevant in subtraction is usually treating the
operation as one of finding the absolute difference
between the two numerals, but the equation (as writ-
ten) does not mean that. In this case the child has to
learn that one (7 - 2 = ) is an operation that can be
done with positive numbers and the other (2 7 = ) is
one that necessitates a negative answer if it is to be
done. Subtraction is not commutative although addi-
tion is. This is more commonly an impasse in two-
digit subtraction with renaming.

Decimal Fractions

There has been quite a bit of research which looks
at the difficulties learners have when they begin

to work in this area. Misconceptions are almost always
instances in which learners have brought concepts that
they have learned about whole numbers and applied
them to decimal fractions. Two examples will be
familiar to those who teach at this level:

11 is bigger that 2, therefore .11 is bigger that .2
13 + .62 = 75 because 13 and 62 are 75.

One particularly interesting study was carried out with
students in Israel, France and the United States. It
found that French and American students, who were
taught about decimals after working with whole num-
bers, made mistakes of the kind shown above, in
which whole number logic was applied, incorrectly to
decimals. The Israeli children were different. They
were introduced to decimals after working with frac-
tions. They knew that 1/2 was larger than'/ and many
students therefore thought that .2 was larger than .4.

James Hiebert and Diana Wearne at the University
of Delaware have studied children's concepts about
decimals extensively (see also Carr in set No. 2, 1986,

reprinted as item 9 in this folder). They have shown
that those who learn procedures without a firm under-
standing of the underlying meaning of the decimal
fraction are very likely to make errors like those in the
examples above. This mis-learning is very hard to cor-
rect: children continue to make such mistakes even af-
ter instruction which carefully teaches the meaning of
decimals through the use of Dienes blocks. They make
similar incorrect generalizations from one procedure
to 'another, such as believing that since it is important
to line up the decimal points when adding decimals
it is also important to do so when multiplying deci-
mals.

The point here is not that the learners' incorrect pro-
cedures are wrong (in that they give the wrong an-
swer), but that they are inappropriate applications of
a procedure or concept (which works in one context)
to a different context where it doesn't work. Should
the learner who is told that .11 is not larger than .2 sim-
ply accept that information and reject previous under-
standing that 11 is larger than 2? That would require
the learner to doubt all previous carefully constructed
concepts, in this case ones which go back to early
counting in conventional order as a means of know-
ing which is the larger number.

Operating With Negative Numbers

When you subtract, things get smaller. Therefore
4 (-3) will be smaller than 4. Some learners

think that since there are two negatives, it is going to
be a lot smaller. This appears to be an area of math-
ematics in which most students 'learn the rule' (and
often it is the wrong rule) and then apply it without
thinking about what the rule means.

One competent child who knew numbers could go
below zero but had not been taught to operate with
them explained that ''5 (-1) was -4 because you had
5 negative things and took away 1 of them, leaving 4
negative things. However he then argued that
3 (-3) was 3, because you didn't have any negative
things to take away, so that was the same as 0, and
3 0 = 3. Mature educators have found that logic very
appealing. Should that child be told that his answer
is wrong, when so much of the logic is right?

The underlying meaning of double negatives is elu-
sive and quickly forgotten. In an informal study of
how educated adults understood this, it was discov-
ered that unless the adults had some on-going experi-
ence with formulae, as do scientists, engineers, and
mathematics teachers, the expression either meant
nothing or brought up the response that they thought
there was a rule for that but they couldn't remember
what it was. When those who could operate with
negative numbers were asked to explain why the rule
worked none of those questioned gave the explanation
that is found in most text books.

Two responses were common from people who did
not remember the rule. One was to ignore one of the
negative signs, treating 4 - (-3) as 4 - 3. The other was
to believe that the operation could not be done. Their
logic for this was that it was impossible to take away
negative things, much like the untutored child
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mentioned above. Ignoring one of the negative signs
simplifies an unfamiliar problem and relates it to some-
thing which the learner does know. The belief that you
cannot take away a negative when you don't have one
in the first place works from a concrete model for
which the learner has a lifetime of experience.

What Should the Teacher Do?

The process that a learner must go through when
faced with any of these impasses has been

described as a paradox.
...when we push our ideas until we encounter a con-
ceptual gap or obstacle, which signals that our ideas
are in some way false, we can change those ideas
only by remaining completely convinced of their
truth. Only on looking back can we see how our
knowledge has changed and how it has remained
the same.

Thus it appears that the teacher's task is particularly
delicate at these impasse points. There are techniques
for teaching each of the concepts given as examples
here. Directionality in writing numbers and equations
can be related to both the reading process and the
meaning of examples if read right-to-left or left-to-right.
Decimals can be taught with concrete representation,
such as dividing a chocolate bar, or cutting a piece of
paper into ten parts, and then dividing each of those
parts into ten further parts. If children have used
Dienes blocks extensively for understanding whole
numbers, they may become confused if the same
material is now used to represent fractional parts. On
the other hand, if they have not used them for
representation of whole numbers they provide a use-
ful way of representing decimal fractions. Adding and
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Beginning to
Learn Fractions

By Robert Hunting
La Trobe University

/1 6ths, is it bigger or smaller than 1 7ths?
Fractions are notoriously difficult. Difficult to learn and dif

ficult to teach. I have carried out, with help, some research
which throws light on the questions 'When should we begin
teaching fractions?' and 'What should our first lessons be
like?'

8

A Typical Preschooler
Sarah is asked to cut a piece of macrame string into skipping
ropes for two small dolls. She is told that the ropes will have
to be the same or the dolls will be unhappy. Sarah cuts the
string at about the mid-point. There is no sign that she made
any preliminary estimation, no eye-movements nor physical
folding of the string. She tells the interviewer that the dolls
will be satisfied, but does not check the accuracy of her
results. A follow-up problem is given: a longer piece of mac-
rame string is to be shared evenly between three dolls. Sarah
makes three cuts this time, resulting in three roughly equal
pieces which are distributed to the dolls, and a smaller piece,
which is ignored. Again there is no evidence of estimating
nor of spontaneous checking after cutting. However she trims
a small piece from the longest piece after being asked if the
dolls would be satisfied.

Twelve cracker biscuits are to be shared evenly between
three dolls. Sarah begins by giving out a single cracker to
each doll, then stops. When the interviewer reminds her to
give out all the crackers she continues giving out one cracker
per doll in a systematic rotational cycle until all crackers are
apportioned. Sarah moves the piles close to one another
and compares their heights when asked if each doll has the
same amount of crackers.

The interviewer rolls out a ball of playdough into a sausage
shape and asks Sarah to cut it in half. Before giving Sarah
a knife, he asks her to say how many cuts she will make
(she says two) and how many pieces she will get (two). Sarah
takes the knife, carefully places Inaor the mid-point of the
sausage, and cuts. She then corMtres to subdivide each
resultant 'half', until she has eight pieces.

A set of 12 picture swapcards is handed to Sarah, who is
asked to help put half the cards in an envelope. Sarah places
the cards down on the table, picks up eight of them, and
places these in an envelope. She does not sort or count the
cards.

Sharing, and the Dealing Procedure
The beginning of knowledge about fractions is in the action
of subdividing, together with talk about the results. The social
activity of sharing is very important. Through sharing, and
the methods that children use to make equal shares, deeper
meanings for fractions can be taught.

To teachers it is crucial that children learn to share into
precisely equal amounts and that they learn to associate the
special vocabulary of fractions with the number of equal parts
created. However, my research with Chris Sharpley has
shown that young children think about sharing in several
different ways, depending on the social setting. For many
children sharing does not necessarily mean that each reci-
pient will be allocated a portion. Three dolls can share two
skipping ropes if the dolls agree to pass the ropes around,
just as humans do! Young children do not universally believe
that a quantity to be shared is absolute. If the situation de-
mands it, it is reasonable to expect more biscuits or milk will
be provided from somewhere. Alternatively they may choose
to ignore some of what has been provided. Amounts that are
shared may depend on what the child considers appropriate,
and what is appropriate may have, to them, nothing to do
with using up the whole, nor with the creation of equivalent
sub-units. For example, many children stopped sharing out
after giving only one cracker to each doll. This was because
of the size of the dolls; small dolls don't need lots of large
crackers.

Bearing in mind that commonsense may lead to various
ways of sharing, we found that 60% of pre-schoolers in one
study of over 200 possessed a cognitive capacity we call the
dealing procedure a powerful systematic method for sub-
dividing a collection of items into equal fractional portions or
units. An analysis of the dealing procedure shows three
nested components. The primary action is a matching of item
to recipient; for example, one cracker to one doll. The second-
ary action is the completion of a cycle: the action is repeated
until all dolls have received a cracker. If there are crackers
left to be allocated, the cycle itself is repeated. Repetition of
the cycle is the third component.

The dealing procedure has some interesting features. First,
the method guarantees that each recipient will receive an
equal number of items, even though the child very likely does
not know how many items each recipient has received, par-
ticularly if each share has four or more items. Young children
can successfully subdivide a collection into numerically equal



subsets even though they themselves are pre-numerical.
Many four and five year old children check whether the dolls
have fair shares of crackers by comparing the heights of the
piles, rather than by counting the crackers in each pile. Sec-
ond, the dealing procedure works for any number of recipients;
it is a general procedure which transfers to many different
problems. Third, the dealing procedure will work for any size
collection to be shared between any number of recipients.
This feature is crucial for developing knowledge about frac-
tions. The concept is relativistic. For example we can have
one third of a collection of six (two), and one third of a collec-
tion of 39 (thirteen). The size of the fractional unit varies
according to the size of the initial whole. Therefore the dealing
procedure is a very attractive base, full of action and meaning,
for the mathematical language and symbols used to represent
fractional numbers. This is particularly true for unit fractions
such as 1/2, 1/3, and 1/4.

Sharing and Counting
A generally held belief that fractions should not be introduced
until around 8-years-old or even later is under challenge from
recent research. Conventional wisdom has it that since ra-
tional numbers are an extension of the whole numbers, child-
ren should become familiar with whole numbers first, in the
early years of schooling. However the dealing procedure is
widespread among young children. This means that many
have effective means for creating equal fractional quantities.
Appropriate vocabulary for identifying such quantities can be
introduced naturally, as we shall see. Our observations were
that many who can successfully share up a collection using
the dealing strategy do not have well developed counting
skills. In fact, the reverse of conventional wisdom often pre-
vails; sharing, using discrete elements, is ideal for stimulating
counting.

Furthermore, if teaching basic fraction concepts is left too
late, children's knowledge of whole-numbers can dominate
their interpretation of fractions. For example, 1/5 is thought
to be larger than 1/3 because five is larger than three. Also,
by the time children reach the second grade, counting is
probably an integral part of sharing out a collection. Eight-
year-olds who observed younger children dealing out items
thought that it was necessary to count the resultant piles in
order to make the piles equal. There are elements of both
activities which are mutually beneficial. The one-to-one
matching of item to recipient (in sharing) is intrinsic to suc-
cessful counting, and counting can be used to quantify the
size of a share, and later, to assist to predict share sizes.
Fundamental mechanisms for learning whole numbers and
fractions appear to develop side by side and interact, suggest-
ing that initial instruction in whole numbers and fractions
ought to be parallel and related.

The Fraction One Half
One half is a special fraction for children. Knowledge of this
fraction appears to become established at an early age com-
pared with other fractions. Children in the middle and upper
primary years use it as a reference number when comparing
other fractions. Children passing through the primary school
must understand one half (as well as other fractions) at least
at a quantitative level. The next sections explain how to get
to this level, and what happens beyond it.

Categories of Meaning for One Half as a
Qualitative Unit
This is a stage children go through before they understand
one half as a mental object that can be represented precisely.
Categories 1 to 4 are about continuous quantities such as
lengths of string and licorice sticks. Categories 5 to 8 are
about discontinuous quantities.

1. One half as a multiple sequence of subdivisions.
Preschoolers often don't know when to stop. Some when
asked to cut a length in half will subdivide by means of a
sequence of cuts commencing at one end. Others will make
repeated halving actions, making a subdivision at about the
mid-point followed by further cuts at about the middle of each
subsequent portion. There seems to be either a lack of aware-
ness of one half' as implying just one cut, or no notion that
a distribution process (to only two people) must follow. If you
have a school child who, when asked for a half, subdivides
in this way, then the best way to help is to find problems that
provoke alternative means of responding such as using
symmetry for producing two near-equal quantities (e.g., cut-
ting a paper chain of 2 dolls apart), or how to compose the
multiple pieces they produced before into two lots.

2.. One half as a single subdivision where there is gross
inequality between each part. Children in thit category may
lack experience of the social imperative for equal shares.
They may have shared with other people who are physically
different in size, and so expected unequal shares. A simple
activity is for one child to cut a food item into two pieces and
for another child of the same age to have first choice (I cut,
you choose).

3. One half as two subdivisions with remainder. In this
category there is some attention to equality after the first cut

usually the child cuts a small part off the larger and ignores
the remnant. Activities to promote the idea that the two halves
must exhaust the material could include sharing a highly de-
sirable object, such as a food item, or sharing a task where
everything must be moved, such as shifting all of a load of
wood or bricks.

4. One half as a single subdivision, all the material is
used, and there is attention to equality. This is what we
are aiming for. Estimation and checking are seen either before
or after. There are eye movements darting back and forth
between endpoints of the material as an estimate is made of
the mid-point, back and forth movements of a finger or the
cutter before doing the subdivision, and adjustment after the
finger or cutter has been put in place, just before subdivision.
A child who makes a first subdivision, checks the resulting
portions by direct comparison, then proceeds to trim one or
both pieces in order to equalize the quantities (not discarding
the remainder) demonstrates an awareness of equality critical
for a quantitative conception of one half.

5. One half as an unequal subdivision of a collection
of items, no dealing. This is the case of the child with no
systematic dealing procedure. This prevents a successful sol-
ution. Progress will be limited until a systematic dealing pro-
cedure matures. Social activities are needed. Try games and
talking about the relative merits of systematic versus non-sys-
tematic dealing procedures.

6. One half as an unequal subdivision of a collection
of items, with dealing. This is the case of a child who has
a method for dealing in a systematic way, but has not as-
sociated this with the words 'one half'. Unless there is delib-
erate action by a teacher or parent enabling the child to bring
actions and words together, progress will not be possible. Try

playing with a collection of, say, toy farm animals asking for

one half to go in one yard, the other half in the other yard.

7. One half as an equal subdivision of a collection of
items, a result of visual check or estimate. As in Categories
3 and 4 the child may divide the items up and guess by the

size of the stack or heap that they are equal. More sophisti-
cated means such as counting or systematic sharing proces-
ses are not used, not seen to be appropriate. Has the child
developed a dealing procedure? If not, social interactions

games and talk about systematic and non-systematic deal-
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ing procedures would be beneficial. Try the notion of 'fairness'.
If a dealing procedure is available, the farm game in Category
6 would be in order.

8. One half-as an equal subdivision of a collection of
items, using a dealing procedure. This is what we are aim-
ing for. This child will confidently share a collection into two
equal lots using a systematic dealing procedure and count
to check that the outcome is right.

- The next step in the child's progress will be to predict the
size of the fractional unit using whole number facts and re-
lationships. Social interactions should be planned so that the
child will think about the function counting serves after the
dealing is over. Counting is not necessary to determine
whether the portions are equal; the dealing procedure guaran-
tees that, but counting will confirm how many items are in
each half if you didn't already know before you began. Child-
ren who can use whole number knowledge (and in particular
doubles and halves), to anticipate the outcomes of problems
involving finding one half of (small) collections understand
one half as a quantitative unit.

A Structured Learning Environment for
Introducing Fractions: The Farm
To bring this research to classroom practice here is a farmyard
learning environment as a framework or template. The Farm
is a robust framework because it lends itself to a range of
levels of questioning and discussion including situations
that you can return to with the same group of children, or a
different group, so that progressively more advanced ideas
can be explored. The farm is suitable for children aged 5 to
8 years.

The farm has several advantages over subdividing a length
of string or a sheet of paper. First, young children have effec-
tive ways of making equal shares using a systematic dealing
strategy. Second, the created shares can be made precise,
which is important for developing at the same time the concept
of equality. Third, the teacher can evaluate a child's progress
more accurately; unequal parts in the continuous case may
as likely be the result of poor technique as immature concep-
tion of equality. Fourth, informal discussions of equivalence
arise naturally, for example, one half, two quarters, and six
twelfths of 12 sheep all number six sheep.

There are three phases to The Farm. In the first phase
questions and activity center around developing confident
dealing procedures (leading to equal subcollections). In the
second phase the teacher assists the children to associate
the conventional mathematical language of fractions with the
results of subdivisions of collections of farm animals. In phase
three children explore part/whole and whole/part contexts
where the size of the 'wholes' varies. Assess how competent
each child is, then begin them at the right phase.

Materials Needed
A rural mat or sandbox, play animals such as ducks, chickens,
cattle, sheep, pigs, horses etc. Other useful materials include
fences for making pens, yards, or paddocks, trees, buildings,
toy trucks for transporting animals. Small groups of children
can design and draw their own farm layout on large sheets
of paper. One group might plan a three field farm; another
group a four field farm, and so on.

Sample Discussion Starters
The following are indications of the sorts of questions and
activity that might take place.

Phase 1: Consolidation of Sharing Processes
Here is a suggested introduction:

The farmer has just bought a farm, but he hasn't got any
animals. So he goes to the saleyards and buys some pigs.

Let's load the pigs on the truck and take them home to the
farm. The farmer has two yards and he wants each yard to
have the same number of pigs. Can you put the pigs in the
yards?

Allow a child to distribute the pigs, then ask:
Is there an equal number of pigs in each yard?
Why or why not? (Allow different children to respond).
Who thinks there is? Who thinks not? (These questions pro-
voke attention to methods of Checking).

Discuss and contrast systematic one-to-one cyclic
methods, many-to-one cyclic methods, and trial and error
methods as they arise. Encourage children to distinguish
these different methods, and explain in their own words why
a systematic method is superior.

Phase 2: Integration of Language and Action
One day the farmer bought some chickens (for example).
Here they are on the truck (indicate). He has two chicken
coops.
Can you help me put half the chickens in one coop, and half
the chickens in the other coop?
Discuss what should be done. Allow a child to distribute the
chickens.
Is that half the chickens? (Point to one coop).
Why or why not?
Encourage individuals to explain. Invite other children to
evaluate the responses given:
(Child's name), do you think that's right?

Similar problems can be posed where animals are to be
placed in three and four yards. Use the words one-third, and
one quarter (one-fourth can be used interchangeably with
one-quarter).

Phase 3: Extension to Reverse Problems, Variable Unit
Sizes, and Notation
Place a small number (three, say) of animals in a paddock
and say:
The farmer has lost some of his ducks because the fence
was broken. These are the ducks left (indicate). These are
one-half of all the ducks that were in the yard. How many
ducks did the farmer have at the beginning?
The above type of problem can be repeated using a different
unit size (for example, five).
After selling one-half of his pigs to his next door neighbour,
these are the pigs the farmer has left (indicate). How many
pigs did he have to start with?

If children find these reverse problems difficult, act out the
situation using the total number at the outset. Such problems
can be extended using ONE-THIRD, ONE QUARTER; also
fractional units of varying quantities (for example, 1/2 as three
animals, four animals, five animals, etc). Able children can
attempt similar problems solving non-unit fractions such as
2/3, 3/4, 3/4. Fifths may even be introduced.

Other Environments
Other settings that are suitable for use with the three phase
framework described above are introduced below. Space will
only allow us to indicate how the first phase, Consolidation
of Sharing Processes, begins.

The Birthday Party
Today is Jenny's birthday and she is six. She has brought
along some food and some party things (biscuits, cake, bal-
loons, hats, whistles etc).
There are four plates and each plate needs to have the same
number of biscuits on it. Can you put the biscuits on the
plates? (Allow a child to distribute the biscuits).
Is there an equal number of biscuits on each plate?

3



Mary's Garden
Each child in the group has their own set of materials: a shoe
box containing soil, 12 red flowers, 12 flowers of mixed col-
ours, 4 vases, and some popsicle sticks to make borders.

Mary Mary quite contrary wanted to have a beautiful garden
with flowers in it (give children shoebox with soil).
This is what her garden looks like.
Early this morning Mary went to the nursery and bought all
these flowers to plant in her new garden.
She has two special areas where she wants to plant all her
red flowers (give children 12 flowers each).
Can you plant the red flowers so there's the same in each
area?
Show me.
Is there an equal number of red flowers in each area?

Final Comment
In our research we asked questions about young children's
ideas about fractions, identified an important intellectual tool
called the dealing procedure, and advanced our understand-
ing about the scope of children's knowledge of the fraction
one half. Although we are not sure exactly how the dealing
procedure develops, we believe teachers can use it to estab-
lish sound, durable fraction knowledge.

Traditionally books and maths equipment in primary schools
have features-recognition activities (in contrast to constructive
activities). For example, worksheets or textbook pages have
emphasized memorizing links between symbols and pictures
of fractions, such as shaded geometric shapes. Where man-
ipulative materials were used these had subdivisions already
on them. While all these materials have value, they are insuf-
ficient if children do not have the opportunity to develop and
apply their own procedures for subdividing quantities. If a
child is successful at recognition tasks this can lead to the
false assumption that the child understands the concept.

More important than texts and equipment are the verbal
interactions between teacher and child, and child and child,

as different approaches to problems are discussed together.
The adequacy of each child's ideas are, this way, tested
against the ideas of others.

The distinction between continuous and discrete quantity
settings and materials, cutting string and sharing crackers, is
important. It is possible to subdivide a continuous whole such
as a strip of paper into three approximately equal segments,
though this is not an easy task. Alternatively you can subdivide
a row of 15 buttons into three equal subgroups, and the out-

,- comes seem to be-essentially the same. However, from our
work with both younger and older children we know that the
mental processes used to make subdivisions are different in
each case. In the discrete case children initially use dealing
or partitioning strategy. Later, more powerful whole number
multiplication and division relationships are substituted for the
physical sequence of actions. In the continuous case, children
use halving, where symmetry of the material is used, or infor-
mal measurement processes involving the estimation of a
unit, its reproduction, followed by check and adjustment.
These informal processes are difficult to develop into further
mathematical knowledge.

Many teachers and parents comment that the sharing situ-
ations children experience in the home are predominantly of
a continuous nature for example, dishing out soup or pud-
ding. Teachers rely heavily on continuous examples, such as
cutting up an apple into halves and quarters. Yet our research
indicates that where continuous and discrete materials are
both available, children seem to prefer discrete materials.
Most soup is dished out by the ladle-full, and potatoes are
easier to dish out in their jackets than mashed! Certainly
children achieve more accurate results using discrete mate-
rial. We have to conclude that continuous experiences are
important because of the child's prior knowledge base, but
for fractions discrete materials should be emphasized be-
cause children have effective methods for making equal frac-
tional units. Discrete materials allow the relativistic nature of
fractions to be expressed in contextually varied ways to assist
in the development of equivalence ideas.

Notes
Dr Robert P Hunting is a Science Lecturer in Education at the School
of Education Centre for the Study of Curriculum and Teacher Education,
La Trobe University, Bundoora, Victoria, Australia 3083.

The research on which this set item is based can be found in detail in
Hunting, R.P. and Sharp ley, C.F. (1988) Fraction knowledge in pre-
school children, Journal for Research in Mathematics Education, Vol.
19, No. 2, pp. 175-180.

and
Hunting, R.P. and Sharp ley, C.F. (1988) Preschoolers' cognitions of
fractional units, British Journal of Educational Psychology, Vol. 58,
pp. 172-183.

The term pre-numerical, meaning the development of a child's counting
competence in its early stages is discussed and defined in

Steffe, L.P., von Glasersfeld, E., Richards, J. and Cobb, R (1983)
Children's counting types: Theory, philosophy, and application, New
York: Praegar Scientific.

and
Steffe, L.P. and Cobb, P., (1988) Construction of arithmetical meanings
and strategies, New York: Springer Verlag.

That whole-number knowledge can come to dominate children's concept
of fractions (one-fifth being regarded as larger than one-third) is discussed
in

Hunting, R.P. (1986) Rachel's schemes for constructing fraction knowl-
edge, Educational Studies in Mathematics, Vol. 17, pp. 49-66.

That counting is integral to sharing out by 7 years old is discussed in
Davis, G.E. and Pitkethly, A. (in press) Cognitive aspects of sharing,
Journal for Research in Mathematics Education.

The relationship between counting and sharing is an important one and
needs further investigation. See

Pepper, K. (1989) The relationship between preschoolers' knowledge
of counting and sharing in discrete quantity settings, Masters' thesis
in preparation, La Trobe University.

The three stages of knowledge of fractions as a qualitative unit, quan-
titative unit, and abstract unit is discussed in detail in

Hunting, R.P. and Davis, G.E. (1989) Dimensions of young children's
knowledge of the fraction one-half, Manuscript submitted for publica-
tion.

and in
Bigelow, J. Davis, G.E., & Hunting, R.P. (April 1989) Some remarks
on the homology and dynamics of rational number learning. Paper
presented at the Research Pre-session of the National Council of
Teachers of Mathematics Annual Meeting, Orlando Florida.

The Farm. The application of the research to classroom practice was
begun in

Hunting, R.P., Lovitt, C. and Clarke, D.M. (April 1987) The foundations
of number learning project: Where research, children, and teachers
meet. Paper presented in the symposium Early Mathematics Learn-
ing: Teacher-focused Curriculum Change, American Educational Re-
search Association Annual Meeting, Washington D.C.

A discussion of language factors affecting early fraction learning can be
found in

Hunting, R.P., Pitkethly, A., & Pepper, K. Language carriers and bar-
riers in early fraction learning. In R.P. Hunting (Ed.), Language issues
in learning and teaching mathematics. Forthcoming monograph.

That children prefer to deal with discrete (countable) material when they
have the choice is demonstrated in

Hunting, R.P. and Korbosky, R.K. (1989) Context and process in frac-
tion learning, Manuscript submitted for publication.

Copying Permitted
© Copyright on this item is held by NZCER and ACER who grant to all
people actively engaged in education the right to copy it in the interests
of better teaching. Please acknowledge the source.



Item 12

Helping One Another Learn
DISCUSSION IN JUNIOR MATHEMATICS

Gill Thomas
Dunedin College of Education

ITHE PRESENT-DAY classroom children talk to each
1 other a lot. Independently Gill Thomas at Dunedin
College of Education and Joanna Higgins at Wellington
College of Education have been observing the conversa-
tions of very young children as they do mathematics. In
this item and the next are two different, but complemen-
tary, analyses of the children's conversations.

AKEY FEATURE of New Zealand junior mathe-
matics is the widespread use of Beginning School
Mathematics (BSM). It provides a range of activi-
ties for children to use independently of the

teacher. The most common organisational structure is to
group the class into four groups. After some teaching of
the whole class together the teacher works intensively with
two of the groups in turn while the other groups work
independently of the teacher on activities designed to sup-
plement the concepts introduced by the teacher. It is called
independent activity time. The result is that the children
spend up to three-quarters of their mathematics time work-
ing in groups independent of the teacher. It is expected
that the children will discuss the mathematics they are
working on with their peers during this time.

What happens when children work in groups indepen-
dent of the teacher? What discussion occurs within the
groups? How do you encourage children to engage in
'meaning-making' discussion with their group-mates? My
study (a pilot for a full-scale research project) sought to
investigate these questions.

Method
he most advanced group from each of two classes was

1 selected for this pilot study, along with the least
advanced group from one class, the 24 children being
between 64 and 8'A years old.

In the first phase each group was videotaped during
mathematics for a week. The videos were examined, tran-
scribed, and what the children did was coded. In the sec-
ond phase the two teachers and I developed a framework
for group work. We hoped it would encourage the child-
ren to have meaning-making discourse. The framework
had three parts:

1. The collective completion of tasks
The activities chosen for independent activity time were
modified to encourage collective wark, rather than an
individual or competitive approach

2. The management of independAt''activities
The children were encouraged to discuss aspects of
management for example the materials required and
the rules - before the independent time activity was
begun. The idea was to get these problems over first;
then the subsequent discussion could be on the mathe-
matics associated with the activity.

3. Helping one another learn
The children were encouraged to question one another
about the task as they worked on it. There were strate-
gies introduced for giving and receiving help.

The teachers introduced the framework in whole-class ses-
sions, over two weeks. I then worked with the groups we
were studying, encouraging them to use the framework.

Findings
Phase 1

What was the nature of the discussion between child
and child?

Most of the talk (83 per cent) was related to mathematics.
However, most of that was related to task-management,
with very little (7 per cent) being discussion which had an
instructional element.

In order to provide substance to these findings, all the
talk that had an instructional element was analysed for
quality. Requests and responses turned out to be of differ-
ing complexity. So we made a distinction between higher
order and lower order talk. Higher order requests were
ones requiring an explanation of how to obtain a solution.
For example, 'Will you show me how?' A lower order
request simply required an answer without explanation.
For example, 'What is 9 and 5?' Responses were similarly
categorised.

Very few requests were made of other children (1 per
cent). The requests that were made were equally of higher
and lower order, although the majority received only a
lower order answer.

Anna: What does that equal (points to equation)?
Lise: 8 take away 7 equals 1.
Erica: Is it 10 take away 5 or 5 take away 10?
Lise: You can't take 10 out of 5.

There was only one instance of a child suggesting the use
of teaching materials to help another child.

Lise: 8 take away 2 equals 6.
Anna: Does it? 8 take away 2. (Holds up fingers, 4 on

each hand, counts off 6 including thumbs
which were turned down.)
It equals 4, silly.

Erica: 8 take away 2 does equal 6.
Anna: But look. (Repeats with fingers.)
Lise: Go and get some counters.

Take 2 from 8. 1 reckon it equals 6.
Yeah.
She says it equals 4 and I say it equals 6.

(Anna returns with the counters.)
Lise: Work it out with the counters. Get 8 counters.
Anna: No, Erica.
Lise: Leave it to Erica. She's doing it.
Anna: OK. 1 2 3 4 5 6 7 8.
Lise: OK. Now take 2 from it. (Removes 2.)
Lise: You see, it's 6. 1 2 3 4 5 6. It's not 4, it's 6.
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Eighty percent of the responses were unsolicited, that is,
most of the children helped (or attempted to help) without
being asked. Most of them were of lower order. Here are
three.

(To Steve.) Sorry, Steve. 10 plus 2 is 12.

Anna: (To Betty. The card has 9 6 on it.) It's 3.

Justin: (To Kay about a problem on the computer
screen.) I think you should go up; keep going up.

Figure 1
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Discussion
This study highlights a problem caused by a too ready
acceptance of the idea that discussion between children

is a tool for learning mathematics. It is necessary to
explore the nature of young children's talk before assum-
ing that in their talk they help one another learn. Although
the quantitative analysis showed that the talk was usually
task-related, this talk is extremely varied and often not use-
ful to the task. Only a small amount of the talk (7 percent)

.

was task-enhancing.

Task Related

ElInstructional

IIII Task Discussion

Social Maths

Off Task

Phase 2.

How do you encourage children to discuss mathematics
in mathematics time, in a meaning-making way?

When we began this phase we did not have the analysis
completed so what follows is a summary of my reflections,
and those of the teachers, on our attempts to encourage
useful discussion.

1. Although there was an effort made to encourage the
children to work together many of the activities the
children chose to work at during the independent time
were treated as competitive - for example Snap and
Memories. Many of those activities had, of course,
become popular before I arrived.

2. The hope that groups would clarify beforehand which
materials and what rules they would use, was not ful-
filled. The groups continued to make decisions about
the rules as they worked on a task. It was felt by the
teachers that the habit of looking at the materials and
rules before starting would have to be introduced early
in the year when work patterns for the classes were
being established.

3. The children adopted the idea of checking one another
as an activity was completed, but more often than not
they failed to give an explanation if they identified an
error. We wanted to use questioning as a means of
encouraging the children to think about the mathemat-
ics they were working on. But this was fraught with
difficulties. The children were willing to answer ques-
tions asked by the teacher but seemed unwilling
(unable?) to ask questions of one another. It appeared
to me and to both the teachers that many of the activi-
ties were not sufficiently challenging. If the children
can complete the task with ease there is little motiva-
tion to help one another get it done.

This finding poses the question of whether young chil-
dren are capable of task-enhancing discussion with their
peers. There were glimpses in every group. So I believe
that they are capable of such discussion.

How then can teachers stimulate the type of discussion
between children which will help them learn? The frame-
work for encouraging discussion introduced into these
classrooms did not appear to have any impact. The tasks
and work patterns already established had perhaps set the
children in their ways.

Another factor influencing the discussion is the social
atmosphere in which it takes place. The working context
within each group is important and the effect of domi-
nance or conflict within each group needs to be considered.

The nature of the activity, and the way it is structured, is
likely to influence the outcome also. There must be, for
example, sufficient motivation to work together and to dis-
cuss the task, and the tasks must be capable of being done
co-operatively. The dynamics of co-operative learning have
been studied, for example by Johnson and Johnson, and
can lead to better teaching.

Notes
GILL THOMAS is a Senior Lecturer at Dunedin College of

Education, Private Bag, Dunedin, New Zealand. The work
described here is the pilot for a doctoral study and is adapted from a
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Cooperate, Cooperating to Learn. New York: Plenum Press.
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Item 13 A Child's Perspective
of Algebra

,...b;i0,7" f
AA... .40 fo

-" , -
.4 ,.".

4C
.41 ,t

atA&°
`"--.I .

.141 tar
ar'ler:"1

,e
- t

.4- re
s .4

d or° - -

r." 101,

Michael Reed

56 BEST COPY AVAILABLE



A Child's Perspective of Algebra

By Nerida'Ellerton
School of Education, Deakin University

, To a teacher, algebra may be just another topic to present; to a
text-book author, just another chapter. But the children who must
learn it, what do they understand of algebra? How do 11-13 year-
olds cope with this new language? What is it that makes algebra
a mystery to some children?

As part of a recent large-scale study on how children develop
abstract reasoning in mathematics, one hundred and fifty
children aged between 11 and 13 were interviewed while they
worked through a set of mathematics questions.

The questions were:
simple numerical questions (e.g. 2 + 6 = 4 +0);
if... then questions

(e.g. A is a number. If A + 3 = 10, then A + 5 = );
more complex numerical questions

(e.g. 10 ÷ 2 = - 10);

algebra (e.g. Find the value of x which makes this true:
2x 5x + 9x = 12);

word problems;
completion of pattern problems.

For the interviews, children were selected at random from 6
schools two primary schools which draw children from pre-
dominantly lower socio-economic areas, one primary school in
an area of higher socio-economic status, one rural primary
school, one rural secondary school and one surburban secon-
dary school which draws from a wide cross-section of the com-
munity. Children from the final year of primary school and the first
year of secondary school were chosen because many 11- to 13-
year -olds are being exposed to abstract mathematical concepts
while they have few means at their disposal to help them cope. It
is at this age that problems in mathematics can become'deeply
rooted, sometimes influencing the children's future career
options.

Why should algebra be a source of confusion? Does it derive
from a conflict between what the teacher says and what the stu-
dents think?

The Spoken Language of Mathematics

How often do children have the chance to speak the mathemat-
ical language they are learning? Opportunities include responses
to a teacher's questions, initiating a question to the teacher, and

discussion with peers. There is generally no time, though, to allow
detailed interaction involving question/response/probing ques-
tion/response in the normal classroom setting. By having a 1:1
interview it was hoped that children would respond to some of the
questions they found difficult, and through faulty or inadequate
responses, reveal some clues as to the reasons for their lack of

'.understanding. It was anticipated, too, that some children who
feel threatened by a teacher might feel less threatened by
someone other than their teacher.

The interviewer initially explained to the child that we were
interested in how she thought about mathematics and how she
worked out problems. She would not be told whether the answer
was right or wrong, we explained, as what we really wanted was
to hear her 'think aloud'. All interviews were recorded, and lasted
from 30 minutes to 1 hour, depending on the number of questions
tackled and the detail given by the child. Sometimes the child
needed prompting. 'How did you find that answer ?' What are
you trying out ?' What are you going to try now?' Every attempt
was made to use open-ended questions.

Six Children Talk About Ten Algebra Problems

Three girls and three boys of approximately equal (average)
abilities have been chosen, at random, from those interviewed;
three had had no previous instruction in algebra. They were
asked to complete the following ten problems (which were
interspersed with other mathematics questions not included
here).

1: B is a number. What is B if B + 4 = 27 4?

2: A is a number. If A + 3 = 10, then A + 5 =

3. C is a number. If C 6 = 20, then C 9 =

4. 2b x a =2a x

5. =
3

6. If x = 6 andy = 21, what is the value of + ?

7. Write as simply as you can: 5r + 3t t 7

8. Find the value of x which makes this true:
2x 5x + 9x = 12

9. Find the value of x in 5 + 2x = 17

10. Find the value of x in 11 3x = 2

The Interviews

Sue, 13 yrs. Some prior algebra.

Problem 1:
C: Twenty seven minus four equals twenty three
and twenty three minus four is B. So you minus
four and you get nineteen.

Problem 2:
C: A must be seven because plus three equals
ten. Then A which is seven plus five equals
thirteen.

Problem 3:
C: Six from twenty is fourteen and fourteen plus
nine is twenty three.

Problem 4:
I: What do you think it would be?
C: I'm not sure (pause). Does that equal 2b + a?
I: What is written there?
C: 2b times a (long pause) Writes b in box.
I: Why did you write b?
C: The a has changed places to there (points to
2a), so I've just put b in the box. I'm not sure if it's
right or not though.

2 5.7

Problem 5:
C: One times five is five and three times five is
fifteen (Writes 15x).
I: Why did you write the x by the fifteen?
C: There was a letter there (points to 5x) so I just
put a letter there (points to 15x).

Problem 6:
C: Two plus y which is twenty one equals twenty
three and x which is six plus seven equals
thirteen (writes the fraction 23/13).

Problem 7:
C: What do you have to do for this one?
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I: Try to write it more simply.
C: OK. (writes 7r)
I: How did you get 7f?
C: Five and three is eight (pause) r, minus one r
is seven r. Then you have to minus seven from
that (writes -7. Final written expression reads 7t
- 7).

-Problem 8:
C: 5x and 2x. You can't subtract two. Five from
two gives negative three (writes -3x). You've got
to put x there. Five plus nine. You've got to
remember that that's negative (points to -3x),
so it takes you back to six (writes 6x). You have
to double that (points to 6) to get twelve.
I: Does that tell you what x is?
C: No it doesn't.
I: You've got 6x equals twelve, then.
C: (Thoughtfully) 6x = 12. (short pause) Does
that mean x = 2?
(Subsequent conversation indicated that the
verbalisation of 6x = 12 had helped to establish
the relationship between left-hand-side and

- right-hand-side which had not been obvious until
then to the child).

Problem 9:
I: Why did you write down twelve first? (Child is
busy rubbing out 12. Writes 6)
C: Yes, 17 minus 5 equals 12, and there's two
x's which means you have to halve it which
means x equals 6.

Problem 10:
C: I'm not sure. You have to find out what 2 into
3 is before you can get the answer. Because 11
minus 3 is 9 I don't know whether to put the x
down or not. Then you've got the 9 and the 2.
I: Are you finding this one much harder than the
last?
C: Yes.

Alex, 13 yrs. Some prior algebra.

Problem 1:
C: Twenty three.
I: How did you get that?
C: Well, B is 27 minus 4.

Problem 2:
C: A is seven. So A plus five is 12.
I: You found A first, then?
C: Yes, I found out what A was.

Problem 3:
C: is 26, so the answer is 17.

Problem 4:
C: (writes 2b in box)
I: How did you get 2b?
C: That's 2 (points to a) and 2b times 2a equals
2a times 2b. See, a is 2. You've got a there (points
to RHS) so you've got to put b there (points to
box).
I: What made you choose a as 2?
C: Because it says here that a is 2 (points to 2a
on RHS).

Problem 5:
C: How do you know what x is?
I: Do you need to know what x is?
C: I suppose it's just nothing (inferring thatx has
no meaning here) . . . (pause) one three is 3. Put 3
down here (writes 3 in box). Threes into five is
once and two left over (writes 12/3).

Problem 6:
C: x is 6 so you put 6 there (crosses out x and
writes 6) andy is 21 (crosses outy and writes 21).
Two and 21 is 23; 6 and 7 is 13. Thirteen into 23

goes 1 and 10 left over so ten thirteenths. (Writes
2 3/1 3 = 1 1 13/1 3 )

Problem 7:
C: You can only take away from the numbers
that have r on them. Five r take firstly r is 5. Hang
on. You can't tell what r is because you've got t
there (points to 5r) and r there (points to 3t). It can
be one of either of the numbes. So you just do 5
plus 3. You can't do this one (points to -7)
because it hasn't got a letter on it. (writes 8 in
box).
I: What about the other r? (points to -r)
C: You can't tell because there's a r there and a
r there and you don't know what r is.

Problem 8:
C: a take away 5x is minus 3 plus 9x is 6. So x
is 6.
I: Do you mean that x is 6 because you have
6x?
C: Yes.

Problem 9:
C: x is 2 because you have a.

Problem 10:
C: x is 3.
I: Let's think about a different problem. What if
we had 11 x = 2. What would x be?
C: You wouldn't know what x is. You have
nothing to tell you what x is.

Richard, 13 yrs. Some prior algebra.
Problem 1:
C: 23

Problem 2:
C: 15 (Although the interviewer did not probe
this answer, the method the child has used for
Problem 3 will give an answer of 15 when applied
to problem 2.)

Problem 3:
C: If Ctake 6 equals 20, then C take 9 if C equals
20 equals 11.

Problem 4:
C: (reads problem aloud as rb times a equals ta
times (short pause) b.
I: Why b?
C: Because that was tb (corrects himself) 2b
times a equals 2a times by b.

Problem 5:
C: Ones into 5 goes 5. So times the one by 5 to
get 5x so you have to times 3 by 5 to get 15 (short
pause) x (writes 15x in box).

Problem 6:
C: (writes 6 nears and 21 near y) That must
leave you with two sixths and twenty one
sevenths which is twenty three thirteenths.

Problem 7:
C: 5r plus 3r equals 8r. Take t equals 7r take 7
equals 0.

Problem 8:
C: 2xtake 5x equals minus ax plus 9x equals 6x.
Take 12 equals minus 6x so x would equal . . .

(pause) . . .

(repeats whole statement) . . . a take 5x equals
minus 3x plus ax equals 6x. Take 12 equals
minus 6x so x would equal 1.

Problem 9:
C: Five take 17 equals 12. So it would be five
plus 12 equals 17. So x would equal 12.

Problem 10:
C: x equals 3 because 11 take three threes are
9 equals 2. So x equals two (writes 2).

Anne, 12 yrs 6 mths. No prior algebra.

Problem 1:
C: Twenty seven minus four is twenty three.
I: So is that what B would be?
C: Yes.

-Problem 2:
C: Seven plus three is 10. Then seven plus five
is 12.

Problem 3:
C: Well, if C minus 6 is 20 then twenty minus 9 is
11

Problem 4:
C: I made b two and a six. Then two times b is 4
and four sixes are 24. Then 2a is 12 and b is 2 so
two times 12 is 24.
I: That's why you've put b as the answer?
C: Yes.

Problem 5:
C: (writes 15 in box) I made x five. Where's the
rubber - I've made a mistake here!
I: Tell us what you did.
C: Well, I forgot you have to times it by 5 there
(points to 5x) I'm going to putx is 3. One three is
3 and three threes are 9 (writes 9 in box).
I: Is that the answer then? (child nods) What
about the x? (points to the x)
C: x changes into . . . wait a sec. That would
have to be 21 (points to 9). That's 15 (points to 5x
and writes 15) and three 7's are 21 (writes 15/21
next to question).

Problem 6:
C: y is 21. Twenty one over 7, I brought down into
3, and then two sixths equals one third. Then I
added them together, three and one third.

Problem 7:
C: I have to work out what r is? (said as a
question)
I: Do you need to work out what r is? Do you
think you have enough information to work out
what r is?
C: No, (reads problem out) there's not enough
information there.
I: Can you write it a little more simply?
C: Well, I could add these together.
I: What would you get then?
C: I'd have to work out what r is.
I: Do you have to know what r is?
C: 8rand I could add those two together (points
to -r-7). But I'd need to know what r is (writes
8r r 7.)

Problem 8:
C: (long pause)
I: What are you trying?
C: 2
I: What's happening?
C: It didn't work out. Two 2's are four, five 2's are
ten and nine 2's are eighteen. Four minus 10 is
six, so it doesn't work out.
I: Had you tried anything else first? (child had
written 45 15 on paper first)
C: Yes, 5. That one didn't work either.

Problem 9:
C: (pause) six.
I: How did you get that?
C: Well, I took 5 from 17, that's 12, and two 6's
are twelve.

Problem 10:
C: (short pause only) x is 3.
I: How did you get that?
C: I took two from 11 which is 9 and three 3's
are 9.
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James, 12-yrs 10 mths. No prior
algebra.

Problem 1:
C: B is 27.
I: How did you get that?
C: 27 take 4 here. B plus 4 won't make any
difference, so R is 27.

Problem 2:
C: A plus 5 is equal to 12.
I: What did you do there?
C: A plus 3 is 10, and A plus 5 is adding two
more on so it must be equal to 12.

Problem 3:
C: Must equal 15. Since C take away 6 is 20, C
take away 9 is three more so it will be 17 (wrote
15 first, crossed it out and wrote 17).

Problem 4:
C: I reckon that's 2 times 1.
I: What would make you choose that?
C: b's the second letter of the alphabet, and a is
the first, so choose 1) as 2. Then 2a which is 1
gives (trails off, writes b after long pause).
I: In your mind, what did you do? Did you
change a and b into numbers?
C: Yes, because as the first and b's the second
letter in the alphabet, you just use these
numbers.
I: What did you get for 2b times a then?
C: Two, because two times one is still 2.

Problem 5:
C: I'm going to say x is 20. Then it's one over 3
times 520. It's really 3 times 520 (works out 520
x 3). That's 1560.
I: Would you leave this as the answer even
though you put something fors?
C:. Yes.

Problem 6:
C: (Reads) if x equals 6 andy equals 21, what is
the value of 2x plusy seven? (Pause) Two times
7 which is 14, put the one up for the x and the 4
for they so it's onex andy four (Writes 1tv +Y/4).
I: What about the fact that we've got x = 6 and
v= 21?

I don't know. I don't understand that bit.

What Do the Interviews Tell Us?

Problem 7:
C: Take away five plus three r take away 7.
(writes x 5x + 3x - 7)

Problem 8:
C: Two take 5 is 3 plus 9 is 12. Just don't worry
about the x's. x is zero because you don't have
to worry about the x's,

Problem 9:
C: The value of x is 10 because five plus two
equals 7 and then x must be 10.
I: Before we go on, I'd like to explain what's
meant by 2x and so on. 2x means two 'lots of x.
Does that change what you've just said, or will it
stay the same?
C: It could be 6 because 2 times 6 would be 12
plus the 5 gives 17.

Problem 10:
C: x would be 9 because 11 take away 9 is 2.
I: The a would be 9?
C: Yes. Oh (short pause), the x would be 3
because you times 3 by 3 which is 9. Eleven take
away 9 would be 2.

Jill, 12 yrs 5 mths. No prior algebra.

Problem 1:
C: (writes 23)
I: If B is 23 that would be 23 plus 4 equals 27
minus 4.
C: Oh, yes.
I: Would you be happy with that?
C: I suppose. I don't know these.

Problem 2:
I: Having letters A or B is just like having an
empty box there.
C: Right-oh (pause)
I: Do I add A and 5? (writes 7) That's wrong.
I've got to add them (writes 12).

Problem 3:
I: How did you get 23?
C: 6 and 14 is 20 and 14 and 9 is 23. I'm not sure
how I got it.
I: Have another look.
C: Let's see. Twenty six. Twenty six minus . . .

I'm always doing this. I don't look at it properly
(writes 17 in box).

Their responses reveal that the children are almost totally pre-
occupied with trying to cope with the new language and ideas in
the algebra problems. In doing so, they neglect to carry out simple
arithmetic checks, or make careless mistakes such as Sue's
'seven plus five equals thirteen' for Problem 2.

Another example of the children's overriding concentration on
the unfamiliar is their failure to remember how to add fractions in
Problem 6. Most carried out the substitution correctly, but only
one could carry the working through to a correct answer.

Although there is nothing unexpected in this preoccupation, it
gives us important information about how children cope with an
unfamiliar abstract situation.

All their resources become channelled into tackling the
unknown, at the expense of the more familiar. They cannot apply
a known and practised method and cope with the unfamiliar at the

Problem 4:
C: (writes b)
I: Why do you think it's b?
C: I don't know. I just swapped it round; a went
to there so I thought b would go there.

Problem 5:
C: What's x?
I: -It takes the place of a number, any number at
all.
C: Can it be zero?
I: Yes, or any other number.
C: I'll put 150 then (writes 150 in box).

Problem 6:
C: (Crosses outx and writes 6; crosses outy and
writes 21. Writes 21 + 2 _ 23

'42 42
I: Can you explain how you did that one to me?
C: Two goes into forty two 21 times and 21 goes
into 42 twice. Then I added them up.

Problem 7:
C: What does r stand for?
I: It can be any number at all. What do you think
5r plus 3t would be?
C: Zero. It could be anything. If I were to make it
zero, it would be 50 plus 30 minus zero. Then
minus 7 is seventy three (writes 73). ,

Problem 8:
C: Can I make it a double figure?
I: I'll help you a bit here. a actually means two
times the number you put in for x. So if x is 3, a
is two times 3 which is 6.
C: Right.
I: What would 5x be, if x is 3?
C: Anything. (pause) 6 (pause) 56. (She has
evidently retained the 6 from the example of a
= 6 when x = 3, and has resorted to her earlier
strategy of simply 'tagging on' the value of x to
the coefficient).

Problem 9:
C: (points to 2x) 12.
I: If 2x is 12, what would x be?
C: One. Is there one x or just straight out x? Is
there just x?
I: Yes.
C: Then x is 6.

Problem 10:
(not attempted as time ran out)

same time. And when the former breaks down, success in the
latter is doomed.

Another aspect of children's mathematical understanding
revealed is the speed and depth with which an idea is grasped
and embedded. Unfortunately, this applied equally to correct and
incorrect ideas, and perhaps accounts for some of the difficulties
children encounter with algebra. An inappropriate idea may be
grasped quickly and implanted long before the end of the first
lesson on the topic, but discovering and correcting the miscon-
ception might take many months. Alex, for example, correctly
answered Problems 2 and 3, but seemed to get the impression
that 2b meant b = 2 in Problem 4. By the time Problem 9 was
answered, his new strategy gave him the answer .v = 2 very
quickly. With Problem 10 , his answer x = 3 may well have been
marked correct but was his strategy correct? Despite his earlier
solvings of Problems 2 and 3, he was unable to solve 11 x = 2.
A new (and perhaps satisfyingly simple) strategy had overridden
his earlier sound but possibly more laborious approach.
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On a more optimistic note, Anne, who had already learned
some algebra, found that by substituting values of the variable
used, she could find a solution to the problems. Although her
strategy failed her in Problem 8, it was firmly embedded and she
applied it successfully in Problems 9 and 10.

The interviews reveal that the children's grasp of speaking
mathematical language is shaky. A higher profile should be given
to ,speaking mathematics in the classroom - confidence in
speaking a language builds up confidence in thinking the lan-
guage and in writing it.

What Do the Letters Mean?

Regardless of whether or not the children had previously learned
algebra, a common difficulty was their search for the meaning of
the letters. If r was used to represent a number, what was the
number? As one wasn't given, a common reaction was to provide

--a-value. But what value? -

For questions like Problem 8, this compulsion to find a number
was to try out possible numbers. Simplification of any kind was
rarely thought of, thereby making what should have been a
simple problem much more difficult.

The meaning of the letters was often misinterpreted. Jill, for
example, took t in Problem 7 to represent place value. Early cor-
rection (Problem 8) failed to correct the misinterpretation, even
though Jill had appeared to understand the explanation.

Ignorance Is It Still Bliss?

A favourite strategy was to ignore whatever part of the problem
could not be understood. If it wasn't within their personal realm of
experiences, they felt it must have no real relevance to finding the
solution to the problem. Alex for example, could not solve
problem 5 because he felt that x had to have a value. He therefore
concluded that x was unimportant and could be ignored. James
showed a similar philosophy in Problems 1 and 8.

Abstract Ideas, Symbolic Notation and Errors

Problems noted during the interviews fell into six broad
categories.

(a) Trying to keep track of abstract terminology and ideas and to
manipulate simple numerals simultaneously seemed to present
difficulties.

(b) Children tried to carry too much information in their heads.
When some figures were written down, improved accuracy was
usually noted. A difficult problem was rarely broken into two or
more smaller parts that could be handled.

(c) Children commonly tried to give the letters numerical values
at the earliest opportunity, whether this was appropriate or not.
Presumably, this builds directly on their previous knowledge of
manipulating numerals and on the current information that the let-
ters denote numerals. With this philosophy ingrained into the
children's background, it is clear that asking them to put aside
these ideas is an immediate conflict.

(d) The meaning of place value had been drilled in Primary
School mathematics. The use of 21- and ax and so on is seen by
some children as an extension of these ideas. (If t has a value of
0 then 2r can be written as 20). The notion that 2t means two mul-

tiplied by t is therefore a conflicting idea with what has gone
before. Similarly, 2r was sometimes interpreted as 2 + r (James,
Problem 9).

(e) Rapid establishment of strategies means that some children
learn a correct approach quickly while others acquire an
erroneous method just as quickly. In a classioonrthis can cause
problems.

(f) Algebra was regarded by the children as a topic that we
haven't done yet' or one which had been done a long time ago
and forgotten. The use of pronumerals was seen as a new topic
and certainly not as an extension of their previous mathematical
knowledge.

Adult Ideas For a Child's World

With children such as James, a simple explanation of the
meaning of 2r and 3x and so on clarified the problems. The inter-
view was continued with James . . .

I: If you had 5 + y = 17, would that be easier to do? (easier than
5 + a = 17)
C: Yes, v would be 12.
I: What about 5 + = 17. Would that be easier to do than 5 +

v= 17?
C: No, that would be harder.

This answer was unexpected. But why should we scrutinise child-
ren's ideas in the light of adult values and expectations? Isn't that
precisely what we are doing when we teach algebra in the formal,
abstract model that we ourselves were taught by? If we tried
instead to look at algebra from a child's perspective, we might
begin to develop algebra from the mathematical base with which
the child is already familiar.

Most of the current textbooks introduce algebra by describing
the use of pronumerals, for example:

A letter which replaces a number or numeral is called a pro-
numeral . . . The number which stands before the pronum-
eral is called the coefficient and tells us how many pronum-
erals there are . . . E.g. in 5b, 5 is the coefficient of pronum-
eral b. This means that there are 5b's
(Lynch eta!, 1981)

Then follows a section on simplification of expressions, evalua-
tion, recognition of like terms and so on. Equations and inequa-
tions follow (in the book quoted from) in a later chapter.

In the interviews, simplification and gathering of like terms was
one of the more difficult tasks. The meaningof 5x or 5b in isolation

was obscure. By contrast, the intuitive solving of If A +3 = 10
then A + 5 = was possible, as also were attempts at finding x
when 5 + 2x = 17, once the meaning of 2x was explained. Some

may argue that the solution of the former problem when finding A

was not included cannot be regarded as algebra. Surely, though,
any problem that embodies some of the abstract ideas of algebra

(as this problem does), is a useful bridge between fully numerical

and fully algebraic expressions.

What Can a Teacher Do to Make Algebra More
Meaningful?

1. Listen to the children. Their questions reveal what they think

they don't understand, and may suggest what modifications need
to be made to teaching approaches. If the text book you use goes
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against the eltildren's needs, don't follow it slavishly select suit-
able exercises, add your own activities, and share ideas with
other teachers.

2. Encourage the children to write down the steps they use in
working out the problem. Show them how this means they don't
have to remember the solution to the first part of a problem while
they tackle the second part.

3. Turn the children's questions around. 'What do you think the
next step is?' Frequently this approach will show up misconcep-
tions or misinterpretations. The difficulty is, though, that no one
feels comfortable revealing their lack of knowledge or under-
standing. It is up to the teacher to help the child to feel secure in
discussing mathematics by demonstrating a supportive and not a
destructive role.

4. Give individual encouragement. It is one thing to say to the
class 'Have a try at these problems'. A child who is having difficul-
ties with that topic will not necessarily respond, except negatively.
A direct conversation with the child, though, helping him/her to
find a starting point and offering encouragement can make a sig-
nificant difference to the child's attitude; 'Perhaps I can do it if I

'try', rather than 'What's the-point of trying?'

5. Above all, let algebra develop from the child's needs and
experiences. Finding missing quantities, measuring perimeters
(then letting children suggest an abbreviation for length and
breadth, leading to simple formulae and substitution and
checking by measurement), for example. Abstractions need to be
based on experiences if they are to be understood and
generalised.

Notes

Dr Nerida F. Ellerton is a Lecturer in Mathematics Education in the School
of Education, Deakin University, Victoria 3217, Australia.

A 35-minute mathematics test was given to 10,500 children and adoles-
cents aged between 11 and 18 years in the Adelaide metropolitan region
in South Australia and the greater Wellington region in New Zealand. This
39-question test established a data base for a large scale study on the
development of abstract reasoning.

For background reading in the use of interviews to diagnose errors and
areas of difficulty in mathematics, the following references are useful:
Ashlock, R.B. (1982) Error Patterns in Computation, C.E. Merrill Pub. Co.,
Columbus Ohio; Lankford, F.G. (1974) What can a Teacher Leam about
a Pupil's Thinking through Oral Interviews, The Arithmetic Teacher, 21,
26-32; Newman, A. (1983) Language and Mathematics, The Newman
Language of Mathematics Kit, Harcourt Brace Jovanovich Group, Syd-
ney.

The recent large scale study of how children develop abstract reasoning
in mathematics can be found in Ellerton, N.F. and Johnston, L.C. (1984)
An Investigation into the Development of Abstract Reasoning, presented
at the 5th International Congress of Mathematical Education, Adelaide.
The quotations about pronumerals are all from Lynch, B.J., Picking, L.P.,
Anders, J.L., and Coffey, M.J. (1981), Maths 7, Sorret Pub. Co., Malvern
3144, Australia (quotations are on pages 170 and 172).
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better teaching.
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Item 14

What Are the Benefits of
Single-sex Maths Classes?

By Ken Rowe
School Programs Division,

Victorian Ministry of Education

Introduction
THE MAJORITY OF GIRLS in Australian schools
choose not to take mathematics and science sub-
jects at higher levels. This choice is said to 'limit
their career options to a narrow range of tradition-

ally female vocations'.
One popular and highly visible method of doing some-

thing about this involves the establishment of single-sex
classes within co-educational schools. This strategy fol-
lows classroom interaction research and literature indicat-
ing that, whether the teacher is male or female, boys con-
sistently receive a greater proportion of a teacher's time
and attention in mixed-sex classrooms. Spender in 1982
estimated that boys receive 'two thirds of a teacher's atten-
tion.... in mixed-sex classrooms' principally because
teachers demanded more of the boys and the boys needed
more discipline. This was confirmed in Australia: Leder in
1986 reported

For the majority of contacts (those initiated by teachers)
boys interacted more frequently than girls with their
teachers, in both language and mathematics lessons.
As well, boys consistently sought and received teacher
attention more frequently than girls.

This is not just a finding in co-educational classes. In Vic-
toria in 1987 Nix found that boys dominated mixed -sex

classes but the teacher was more in control in single sex
classes.

Such research, together with a growing literature con-
tributing to the raising of consciousness of equal opportu-
nity/sexist/feminist issues, places in question the claimed
advantages of co-educational secondary schooling. For
example, some writers argue that the 'normal' harassment
of girls by boys, which typically occurs in co-educational
schools, is particularly debilitating for girls and counter-
productive for boys.

Gender research suggests that there are marked differ-
ences of confidence in learning mathematics. For example,
Fennema and Sherman's study among senior elementary
and secondary school students found that boys were con-
sistently more confident in their ability to deal with
mathematics than were girls. Confidence, if examined
alone, might account for the major proportion of the vari-
ance in students' mathematics performance and enrolment
patterns. Additional evidence exists to suggest that such
gender differences in confidence may be created by paren-
tal, teacher and societal sex-role attributions. Do co-educa-
tional classes make things worse?

In response to such influences, single-sex classes in Aus-
tralian co-educational postprimary schools, especially for
mathematics and science curricula, are growing. However,
there is some concern that many schools which establish
single-sex or all-girls classes do not appear to be aware of
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alternative strategies (including organisational and cur-
riculum options) designed to enhance the participation
and achievement of girls in mathematics and science. A
few valuable qualitative evaluations of all-girls classes have
been conducted, but the movement to institute single-sex
classes seems to be growing faster than the evidence to
support it.

A 1987 review of current research on single-sex and
mixed-sex schooling, commissioned by the Ministerial Ad-
visory Committee on Women and Girls in Victoria, con-
cluded 'that there was insufficient Australian research on
which to base advice to the Minister'.

A previous study among 12-year-olds examined the joint
effects of gender and class type on measures of students'
mathematics achievement and attitudes towards
mathematics. There were significant positive increases in
both achievement and attitude scores by all students be-
tween two test occasions (nine months apart) and espe-
cially among the girls and boys in single-sex classes. There
were moderate to strong correlations between students'
achievement and confidence scale scores.

Following up the idea that confidence in mathematics
may be the best predictor of student performance and
participation, we began a longitudinal study to examine
the effects of class type on student achievement and con-
fidence in learning mathematics.

Context for the study
At a mathematics faculty meeting in 1984, the teaching

.staff of Ballarat High School (Victoria) expressed con-
cern that, despite demonstrated ability in mathematics,
girls were under-represented in senior mainstream
mathematics classes at the school. It was agreed that girls
were possibly being denied access to their share of teacher
time and support in mixed-sex classes. A decision was
made to institute single-sex classes as one approach but
some means of determining its relative effectiveness was
needed.

A request for assistance came to the Research and De-
velopment Section of the Curriculum Branch, Ministry of
Education (Victoria). On the basis of discussions, it was
decided to embark on a longitudinal study, beginning with
the 1985 Year 7 and Year 8 classes (12- and 13-year-olds).

The school is located in a well-established residential
area of a large Victorian provincial city. It has a long-stand-
ing reputation for encouraging excellence across the cur-
riculum, including mathematics and science. Moreover,
students attending the school are drawn from fairly
homogeneous socioeconomic and sociocultural back-
grounds, and generally have high aspirations.

Method
Students and Teachers
V the commencement of the 1985 school year, and

within timetabling constraints, both the Year 7 [Form
2] and Year 8 [Form 3] student groups were randomly
allocated to either single-sex classes ('treatment' group:
three all-girls and three all-boys classes in each year level)
or mixed-sex classes ('control' group: two in each year
level), with approximately equal numbers of students in
each class. For all other subjects of the curriculum, stu-
dents were in mixed-classes. The teaching staff were also
randomly allocated to the 16 classes involved. Timetabling
constraints meant that the classes did not stay intact into
the next year so the final numbers in the experiment are
180 treatment and 81 control. This is called the Intact
Group. However, those children who shifted from single-
sex maths classes to mixed-sex classes are also worth study-
ing and are called the Shift Group.

Mathematics Achievement and Confidence
Measures

On two occasions in 1985 (approximately nine months
apart), the Year 7 and Year 8 students were adminis-

tered selected items from four domain-referenced subtests
of the ACER Mathematics Profile Series: Operations, Space,
Number; Measurement. Towards the end of the 1986 school
year (third test occasion), the same students (now Year 8
[Form 3] and Year 9 [Form 4] respectively) were again
administered selected items from the- four mathematics
subtests.

On the three test occasions, students were also given
selected attitude items adapted from the Fennema-Sher-
man Mathematics Attitude Scales. Of particular relevance
to the present study, the Confidence scale contained eight
items about confidence in learning and using mathema-
tics.

Results
Class Type Effects on Achievement and Confidence

Intact Group
rr here were significant increases in mathematics achieve-
1 ment and confidence scores for all students, with the

exception of those for boys in mixed-sex classes. Girls and
boys in single-sex classes did better on the first test but
not significantly so on the next two. The between-groups
differences were not significant on the first and second
test occasions. However, both girls and boys in single-sex
classes indicated significantly higher levels of confidence
as time went by. Note that the same things happened to
both boys and girls, and the girls did not gain more than
the boys.

In the intact group the only students whose achievement
levels appear to have been adversely affected were boys
in mixed-sex classes. Regardless of mathematics achieve-
ment, students in single-sex classes indicated consistently
higher gains in confidence, over time, than those in mixed-
sex classes, with confidence being a significant predictor
of achievement.

Class Type Change Effects on Achievement and
Confidence Shift Group

The results for those children who had to shift to mixed
classes or shift to single-sex classes are more complex.

Those boys initially in single-sex classes, gained in both
achievement and confidence. After relocation their
achievement dropped a little and their confidence a lot.
Girls initially in single-sex classes gained confidence but
did not achieve better. On relocation they did improve
their work but suffered a big drop in confidence.

In contrast, the achievement scores of students initially
in mixed-sex classes notably improved following relocation
to single-sex classes (significant for girls), and their confi-
dence scores continued to improve significantly.

The structural relationship between confidence and
achievement indicated that confidence was a significant
predictor of achievement, for both class-type shift groups.

Class Type Effects on Participation
Did the children who had been in single-sex classes
carry their confidence on to the next year? This was

examined by looking at the numbers of Year 9 students
who actually chose either Maths A (mainstream) or Busi-
ness Maths for Year 10, and their class-type background.

The demand for Maths A in 1987 came predominantly
(82% of the girls, 85% of the boys) from students who
had been in single-sex classes for the previous year. The
number choosing Maths A was up on previous years a

30% increase!
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Summary of Results and Discussion
The present study illustrates some of the practical dif-
ficulties associated with the conduct of applied lon-

gitudinal research in a school setting. However, despite
some data-related limitations the results from the study
yielded three major outcomes worthy of comment.

First, in contrast to the evidence available in existing
reviews, it was found that gender differences in mathema-
tics achievement and in confidence on the three test occa-
sions were not significant. The results for the Intact Group
indicated that although boys generally gained higher
scores than girls on both the mathematics achievement
and confidence measures (but not significantly higher),
the most notable improvement across the three testing
occasions occurred among girls in single-sex classes, fol-
lowed by boys in single-sex classes. However, the fact that
boys in the present study generally gained higher scores
may have more to do with the nature of the measuring
instruments used (i.e., multiple-choice/rating-scale-type
tests and inventories).

Second, the results indicated a strong association be-
tween achievement and confidence, with confidence being
a significant predictor of achievement, especially for stu-
dents in single-sex classes. While the change in mathema-
tics achievement over time, independent of confidence,
was similar for all students regardless of class type, stu-
dents in single-sex classes indicated significantly higher
gains in confidence than those in mixed-sex classes.

Third, the major outcome of the study was that, for the
Year 9 students, being placed in single-sex classes was
associated with high levels of confidence which, in turn,
significantly increased the likelihood of their subsequent
participation in Year 10 mainstream Maths A classes. While
it should be recognised that other factors not controlled
for (e.g., teacher effects, Hawthorne effects and related
factors) may have contributed to these outcomes, the evi-
dence is sufficiently strong to suggest that single-sex class-
es were to the advantage of those students concerned.

By any criterion, the overall findings from the present
study indicate that the institution of single-sex mathema-
tics classes at the school studied has been a success. The
findings also lend support for Chipman and Wilson's sug-
gestion that 'confidence, if examined alone, might... ap-
pear quite important'. Nevertheless the outcomes of the
present study possibly raise more questions than they
answer. For example, explanations to account for the ob-
served class-type effects on student confidence, indepen-
dent of achievement, are not simple and require closer
investigation. Part of the explanation for these outcomes,
however, is to be found in additional qualitative data ob-
tained from both students and teachers. While these data
are too voluminous to report in detail here, a brief account
is appropriate.

Observations of classroom interactions in mixed-sex
classes supported the findings of related research, indicat-
ing a consistent tendency for boys in mixed-sex classes to
demand higher levels of individual attention from their
teachers than those demanded by girls. Teachers of single-
sex classes (especially all-girls classes) reported 'improved
working atmospheres' and that 'students identify closely
with their group'. In single-sex classes of either gender,
there was a notable reduction in the frequency and saliency
of student attention-demanding behaviour as well as re-
duced student discipline and management problems (in
most classes). Typical of the comments from girls was: 'It's
easier to talk to the teacher with just girls, because boys
sometimes laugh and make you feel stupid'. This resulted
in perceived increase in both student and teacher 'time
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on task', impacted positively on teacher expectations of
individual student and group performance, and encour-
aged teachers to match both curriculum content and teach-
ing styles to specific gender- and group-related student
interests.

Further explanations for the higher level of confidence
among students in single-sex classes may be relevant to
the outcomes of a recent study by Nelson-Le Gall and
DeCooke in 1987, who found that both girls and boys
typically seek help more frequently from-classmates of the
same sex than the opposite sex. The results of that study
suggest that students' strong preferences for same-sex
helpers may actually inhibit them from interacting with
opposite-sex peers who are competent to provide needed
assistance. Given that such availability is reduced in the
context of mixed-sex classes, this factor may have been an
important contributor to the observed outcomes of the
present study.

In a recent well-controlled study of the effects of single-
sex postprimary schools on student achievement and at-
titudes in the United States, Lee and Bryk in 1986 found
that, for achievement, aspirations, locus of control, or at-
titudes and behaviour associated with school learning,
single-sex schools deliver specific advantages to their stu-
dents, especially to girls. Lee and Bryk conclude:

What has been considered by some to be an anachronis-
tic organisational feature of schools may actually facili-
tate adolescent academic development by providing an
environment where social and academic concerns are
separated.

On the basis of findings from the present study, it could
be argued that similar sentiments may equally apply to
single-sex class environments in co-educational postprim-
ary schools.

In spite of the compelling nature of the data reported
here (at least at the prima facie level) it should be stressed
that, since they are derived from a study in only one
school, the need for ongoing research of the kind reported
here in additional schools is mandatory. The fulmination
and emotion-laden rhetoric which frequently surround
issues concerned with gender and education needs to be
firmly placed in the context of appropriate longitudinal
research.

In any event, the long-term effectiveness of single-sex
class grouping as an appropriate intervention strategy to
increase the participation of students in co-educational
postprimary schools (for any area of the curriculum) has
yet to be established. Moreover the implicated cognitive,
affective, behavioural and psychosocial correlates operat-
ing in single-sex and mixed-sex classrooms require further
investigation. If research findings continue to support the
use of single-sex classes as an appropriate intervention
strategy, the policy implications for government co-educa-
tion systems are, needless to say, problematic. From the
experience of the present author, school-based logistic
problems associated with timetabling, school community
and parental support, impose additional constraints which
must be taken into account.

It may be that, as the current students are followed
further into the more senior levels of postprimary school-
ing (remaining in single-sex classes), both girls and boys
may be better represented in mathematics classes. Time
and commitment will determine whether or not such an
aim will be realised. Suffice to say at this stage, that addi-
tional data need to be gathered before an informed, respon-
sible judgment advocating the universal efficacy of estab-
lishing single-sex classes in co-educational postprimary
schools could be made.
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Item 15

The Mathematical Needs
of School Leavers

Gordon Knight, Greg Arnold, Michael Carter, Peter Kelly
and Gillian Thornley

Massey University

Introduction

What are

(a) the mathematical needs of everyday adult life;
(b) the mathematical needs of employment;
(c) the mathematical needs of those going on

to further education?

We were asked to find out and to report any implications
for current developments in curricula and national assess-
ment.

Mathematics in Everyday Life

A random sample was chosen from the electoral rolls.
.A.These people were interviewed, with questions about

a wide range of everyday tasks such as supermarketshop-
ping, income tax returns, cooking, and hobbies. To avoid
problems which had arisen in other similar research, every
effort was made to avoid the impression that the survey
was some form of mathematics test. While it would have
been useful to know how well people are using mathemat-
ics in their everyday lives, it will come as no surprise to
teachers that people are reluctant to take a mathematics
test unless they have to! They are also unlikely to admit
to using a mathematical technique if they know that they
will be tested on it.

A further problem (apparent in other research too) is
that if you ask people what mathematics they use in their
lives, they interpret the word mathematics in a very nar-
row way, thinking of the pencil and paper methods of the
classroom. They are most unlikely to consider the gen-
eral quantitative and spatial judgements which we make
every day in mathematics. These skills are more likely to
be called 'common sense' rather than mathematics.



Consequently, the interviews were very much task-based
and many of those interviewed were surprised how im-
portant mathematics was in their lives. One woman re-
marked:

You said"you came to ask me about the mathematics I use.
Now you know all about my life.

Table 1
Percentage of people who use mathematics in everyday tasks

Task % using mathematics in the task
Female Male

Supermarket shopping 87 65
Gardening 46 74
Cooking 89 35
Knitting and sewing 78 9
Painting and wallpapering 22 84
Making curtains 39 9

Building, carpentry, etc. 7 67
Running a car 39 79
Holidays 70 74
Sport 35 58
Gambling 9 26
Hobbies 48 60
Cheque account 37 40
Tax return 41 63
Mortgage, investments, etc. 26 47

The mathematics used in these tasks was, not surpris-
ingly, mostly elementary in character. Arithmetic, meas-
urement and simple geometric concepts were predomi-
nant. The important feature was the ability to use these
simple mathematical tools appropriately in a variety of
situations. The ability to make sensible quantitative
judgements based on mental arithmetic and estimation
was at least as important as the ability to carry out pencil
and paper calculations.

Calculators were widely used in those tasks, such as
filling in an income tax form, in which an exact answer
was required. 86 percent of people under 45 used a cal-
culator. As might be expected, only 46 percent of those
over 45 used one.

A significant feature of many of the tasks was that they
involved solving problems. In supermarket shopping, for
example, people have to decide whether or not they need
to know the total cost of the groceries in their trolley be-
fore they reach the checkout, and if so how accurate this
calculation needs to be. They will also make 'best buy'
calculations, choosing between products and sizes. There
was a great variety in the methods used. One woman,
for example, rejected the usual comparisons based on
weight or volume and price in favour of a 'meal size' price
comparison. The best buy for her was the cheapest pack
of mince which would suffice for one meal. The fact that
a larger pack had a lower price per kilogram was unim-
portant if it would not all be eaten, or some would be
thrown away, after one meal. Similarly a large, low unit-
price, packet of biscuits might be uneconomic since, 'they
will eat them all at one sitting anyway'.

Similar problem-solving situations were apparent in
cooking, gardening, wallpapering, and making curtains.
If schools are to prepare students for making these kinds
of judgements, perhaps, instead of teaching specific pro-
cedures to solve problems. For example, to find the number
of rolls of wallpaper needed to decorate a room we should
be asking:

How many ways can you think of to solve
this problem? Discuss the advantages and

disadvantages of each. Under what circums-
tances might one method be better than another?

There are obvious opportunities for group work in this
approach.

Mathematics in the Workplace

or the workplace survey a variety of businesses were
selected. The sample included small operations such

as a hairdresser, a farmer and a motel operator; larger busi-
nesses such as a department store, a fibreglass product
manufacturer and an insurance office; and major enter-
prises such as a coal mine, a car assembly plant, a gov-
ernment research establishment and a large financial cor-
poration. The sample was checked against a Standard
New Zealand Industrial Classification to make sure it was
representative.

Within these workplaces individuals were chosen (for
interview) to give a wide range of occupations. These
included cleaner, truckdriver, manager, pilot, salesperson,
mechanic, estate agent, matron, miner, graphic artist, re-
porter, market researcher, cook, labourer, etc.

Again we held interviews concentrating on tasks which
might involve mathematics and then looking more spe-
cifically at the mathematics skills used in these tasks.

The task questions were of the type: "Have you ever in
the course of your present job in this Company needed
to...?"

As an example, in response to a question asking about
data collection, 65 percent of the respondents said that
they did collect numerical information in the course of
their job. Examples included occupancy rates in a rest
home, petrol pump readings, flight log-book information,
financial records, spraying schedules, the results of flow
testing of hydrants, container utilisation, and sales
records.

Some of the results are presented in Table 2.

Table 2
Percentage of people who use mathematics tasks

in the workplace

Task % of workforce
Female Male

Count things? 98 95

Estimate sizes or quantities? 77 91

Measure anything? 59 81

Collect data? 63 66

Do any sampling? 13 39
Use a formula to calculate something? 49 66

Optimise anything? 69 91

Receive or pay out money? 74 43

Do any bookkeeping? 40 39

Use a calculator? 85 88

Use a computer? 61 54

In the skills section of the interviews we concentrated
on the mathematical skills which were used in the tasks.
For example, in order to gather information on the infor-
mal geometry which people might use, we asked them if
they ever needed to position or arrange objects or shapes
either to pack them into a small space, to make a func-
tional layout, or to make an attractive pattern. 68 percent
replied that they did.

Some responses to questions of the type: 'In the course
of your job do you...?' are presented in Table 3.
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Table 3
Percentage of people using specific mathematical skills

in the workplace

Skill 70,of workforce
Female Male

Summarize data 51 52
Organize data 67 67
Extract information from data 63 69

- Make decisions on incomplete information 54 67
Try to determine a 'best strategy' to follow 74 85
Use symbols or letters to represent numbers 17 40
Use geometric concepts 56 76
Use trig functions 1 21
Use calculus 2 8
Use arithmetic 94 95

One of the more surprising findings is the large pro-
portion (84 percent) of people who indicated that in the
course of their job they needed to optimise something,
that is, to make the best use of available resources. The
techniques they used ranged from very simple ones based
on experience to sophisticated computer modelling.

29 percent used informal methods based on experience
to switch things around until they were satisfied with the
performance. 12 percent were trying to make the best use
of time, either their own or that of their staff. A further
35 percent were making decisions where costs and quan-
tities were involved. Examples included optimising the
use of two storage tanks, scheduling labour, organising
routes for deliveries, minimising the cost of constructing
doors, inventory control, and the application of fertilizer.

Another 6 percent used more sophisticated mathemati-
cal optimisation techniques, often using computers. For
example, a government department used the critical path
method in planning, and a large delivery firm used a com-
puter simulation model to minimise the costs to custom-
ers, to optimise the use of manpower and vehicles, and to
maximise profit.

Mathematics in Further Education

Questionnaires, not interviews were used. Teachers
of courses in polytechnics, colleges of education and

universities were asked what mathematical topics were
needed by students entering their courses. The sample
was not random: humanities courses were specifically
excluded but otherwise an attempt was made to cover the
range of programmes currently being offered in the terti-
ary sector.

The data collected were analysed both in relation to
fields of study such as Teacher Training, Commerce, Sci-
ence, etc., and according to the likely entry levels of stu-
dents.

The analysis indicated that most students entering ter-
tiary education courses (other than in the humanities)
need:

to be computer literate and to have good calcula-
tor skills;
to have a thorough understanding of percentages,
ratio and proportion;
to be confident in making a variety of measure-
ments and in calculating areas, and volumes;
to be able to estimate quantities and to estimate the
associated errors;

to be able to use the algebra associated with the
use of formulae, the changing of simple word state-
ments into symbols and equations, and the solu-
tion of simple (linear) equations.

Some courses from all the fields of study (except service
trades) also made use of:

geometric skills
trigonometry
exponential functions
vectors.

Mathematical Topics in the Curriculum

'Table 4 gives a summary of the survey estimates of the
1. use of mathematical topics in everyday life, in

employment and in further education. The topics are or-
dered roughly from most used to least used.

Table 4
Percentage of people who use mathematics

% of
population

using the
topic in

Topic everyday life

% of % of
workforce surveyed
using the further

topic in education
employment courses using

the topic

Arithmetic 96 100 98

Use of calculators 55 87 87

Measurement 84 82 45

Statistics 7 83 89

Geometry 71 68 37
Algebra-use of formulae 5 60 76

Use of computers 22 56 51

Algebra-solving equations etc. 1 20 59

Trigonometry-triangles etc. 1 11 27
Trigonometry-formulae 0 7 23

Calculus 1 6 18

The table indicates that some topics are likely to be used
by more than half the students in their employment. These
are arithmetic, calculators, measurement, statistics, geom-
etry, algebraic formulae and computers. These, plus al-
gebraic equations, (but not geometry) are needed in more
than half the further education courses. Consequently,
utility justifies teaching these topics to all secondary school
students.

The justification for teaching trigonometry and calcu-
lus is less easy. It has to depend on a deeper considera-
tion of the question of why we teach mathematics. Are
there reasons other than pure utility? If so, what are these
reasons, and are trigonometry and calculus the best top-
ics for achieving these other objectives?

Problem Solving

'in addition to the technical mathematical skills associ-
lated with the topics identified in table 4, the survey
very clearly revealed the need for more generic problem-
solving skills.

The role of problem-solving was particularly evident
in the employment survey. It was estimated that of the
workforce:

81% are involved in procedures which try to
determine a 'best strategy' to follow;
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84% have needed to optimize something in the course
of their current job;

63% need to make decisions based on incomplete
information;

67% extract information from data;
62% position or arrange objects or shapes to make a

functional layout;
71% need some mathematics to read reports, articles,

journals or research.
None of these activities is 'technique oriented'. For ex-

ample, it would be possible to excel at the routine skills
of adding fractions, solving quadratic equations, using the
cosine rule, and differentiating using the product rule, but
have very little skill in the process tasks above. This was
also true in the everyday life survey where a number of
situations called for judgement rather than the applica-
tion of an established mathematical procedure.

Mathematics in the New Zealand
Curriculum

"r his research was carried out in New Zealand and
therefore in the full report the implications for the

New Zealand curriculm and New Zealand national
assessment are drawn out. The new mathematics curricu-
lum from classes J1 to F7 which is being introduced in
1993 and 1994 includes some important changes in
emphasis. These are:

(i) a strong emphasis on problem solving, with a
specific 'strand' on mathematical processes;

(ii) an emphasis on statistics (which has its own
"strand" from Level 1 to Level 8)

(iii) the recognition of the importance of calculators
and computers.

The results of our survey give very strong support for
these changes in emphasis.

Mathematics in Australian Curricula

Although this survey was carried out in New Zealand
..there are implications for Australian curricula, the
mathematical needs of industry, adults, and children in
both countries not being dissimilar.

The Status of Topics in the
Curriculum

The survey produced clear evidence that the single
most important mathematical ability required by peo-

ple both in everyday life and in employment is the ability
to make sensible quantitative judgements in problem-solv-
ing situations. These judgements are most likely to in-
volve estimation and to be based on mental arithmetic.

It seems that such skills are undervalued in an educa-
tional system in which status is given, almost entirely, to
topics which occur in examination prescriptions and pa-
pers. In New Zealand School Certificate and Bursary ex-
aminations dominate the secondary school curriculum.
Their emphases are on algebraic, trigonometric, formal
geometry and calculus skills. The survey shows these will
be used by relatively few students.

Some schools provide courses which are not geared to
these examinations, but they tend to be dismissed by
students, parents and sometimes teachers, as 'vege maths'.
Consideration needs to be given to ways in which these
essential skills can be given status within the system. Stu-
dents should have the opportunity to prove to themselves,
to their parents, and to future employers that they have
mastered the most important skills for functioning effec-
tively at home and at work.

Gender Issues

There were very clear gender differences in the use of
mathematics both in everyday life and in the workplace.
Most of these differences seem to reflect the fact that (in
New Zealand society at least) men and women tend to
undertake different tasks in the home, to have different
hobbies, and are employed in different sections of the
workforce.

There was some suggestion, however, in the data, that
men and women engaged in the same task involving
mathematics, tend to approach it differently. This possi-
bility will be the focus of further research.
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Item 16 How I Failed
by an ex-student of Mathematics

Tsuppose that some people get pleasure from the mere manipulation of algebraic equations and
the integration of standard functions, but I don't think I am one of them: I can tell vou I was

delighted when I saw Question 8 in the Scholarship_paper.

Question 8
An isolated island nation in the South Pacific decides to claim exclusive fishing rights in the zone
within x miles of its coast. The island is triangular and has perimeter p miles.

Figure 2

(a) Let A be the area of ocean with the fishing zone and let L be the outer perimeter of the new
zone.

Show that A = Trx= + px and L = p + 2Trx.

(b) The Ministry of Agriculture and Fisheries claims that the annual income from fishing the
new zone will be $13p/square mile. But the Ministry of Defence says that the annual cost
of policing the zone will be $8L/square mile.

For what range of values of x will the zone be profitable? What value of x maximizes the
net annual profit? (Give your answers in terms of p).

I spent most of the fifteen minutes reading time studying this question and I moved right in
on it once we had permission to begin.

It was clear how to begin: I drew the figure which is reproduced here as Figure 2. Being an
island nation I supposed that, to within a very small error, the perimeter of the fishing ground
was

p + (Tr-N) + (Tr-Z) + (TT-0) = p +3Tr - (N +Z +O)

I only had to calculate the sum N +Z +O, and that didn't seem too bad, given that the triangle
was on the surface of a sphere.

Looking at the answer, I saw that I could anticipate that

N +Z +O =Tr

and that is where I first lost a bit of confidence. A sphere has positive Gaussian curvature and
from what I could remember that would imply that all triangles on it would have angle sum
greater than Tr! But it was only a momentary setback because my.experience with scholarship
questions had been that the difficulties tend to disappear in a flurry of cancellations at the last
minute.
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So, I set about analysing the triangle NZO on the surface of the sphere, keeping in mind that
I had to calculate the sum N +Z +O. I drew what is here Figure 3.

In this drawing I first found

OZ + ra
ON +43
NZ + ry

were r is the radius of the earth.

Hence

Also

p = r(a +13+10.

Figure 3

TU = QU sin a
TV = QV sin y
QU cos a = QV cos y
VU2 = QU2 + QV2 - 2QU. QV cos 13
VU2 =TU2 + TV2 - 2TU. TV cos Z.

Putting all these together led to

cos 3 cos y cos a
cos Z = sin y sin a

From symmetry it was clear then that

cos y cos a cos 13
cos 0 = sin a sin p

cos a cos cos y
cos N = sin p sin y

Q =centre of earth

r =radius of earth

Keeping my mind on N +Z +O I thought the right thing to do might be to calculate
cos (N +Z +O). I easily worked out

cos (N +Z +O) = cos N cos Z cos 0

cosNsinZsinO cosZsinOsinN
cos 0 sin N sin Z

but when I began to substitute the values of these cosines and sines, my courage failed me. So I
tried sin (N+Z +0) , which turned out to be just as bad.

I looked at some other things, but with no success until I suddenly found that n hours had
passed. With fear in my heart I spent the remaining fifteen minutes dashing off an answer to
Question 1, but that was all I managed for the whole exam.

In the event, I ended up getting 25 percent. As this was more than full marks for the two
questions I attempted, I was rather surprised, but maybe there was a lot of scaling.

Anyway, I am happy in the job that the Labour Department has found me, helping old
people with their gardens, and I often find a bit of spare time to puzzle over this question. I still
can't satisfy myself that a triangle on the surface of a sphere can have an angle sum of ir, but I
suppose there is something about it that I still haven't spotted.

Notes
This item first appeared as an article in The New Zealand Mathematics Magazine, Vol.18, No.1, 1981, in
which it was called "How I Failed the Universities Entrance Scholarship Examination in Pure Mathematics
in 1978." Permission to re-print was granted by the Editor, to whom our thanks.

The New Zealand University Scholarship exam is still held, though the University Entrance exam has
been superceeded. Scholarship is sat by the students who schools regard as their top Form 7 (Year 12)
scholars, and if passed with sufficient marks results in a small suppliment to any other grants.

©Copying Permitted
Copyright to this item is held by the author. However, it is understood that he has no objection to it being
copied by people involved in education in the interests of better teaching; just acknowledge the source - the
New Zealand Mathematics Magazine Vol. 18, No. 1, 1981.
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